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5. Original Objectives and Methodology as in the Sanctioned Proposal 

(a) Objectives (Reproduced from the sanctioned proposal): 

i) To develop a fuzzy-stochastic multi-objective optimization model for the water quality 

management of a stream. The model would specify,- for known hydraulic characteristics, 

BOD levels of the industrial and municipal effluents and the environmental constraints on 

the allowable DO deficits - the optimal treatment levels for the effluents, considering the 

random variation of the streamflow and conflicting objectives of the industry and the 

environmental agencies. 

The research in the project would aim to enhance the current state of the art in 

modeling by incorporating the following features: 
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(a) Use of a sophisticated pollutant transport model (such as the QUAL2E-UNCAS, 

developed by Environmental Protection Agency, US) in the optimization model, 

and 

(b) Inclusion of randomness of streamflows in the model, thus addressing 

simultaneously uncertainties due to randomness and fuzziness both in the same 

modeling framework. 

ii) To demonstrate the applicability of the model through a case study in Karnataka 

state. Interpretation of results, discussion on the implications for industry and 

the environmental agencies would be provided for the case study. 

iii) To document, for the case study application, a step by step procedure for using 

QUAL2E-UNCAS, including the uncertainty analysis details. This document 

would act as a user manual for adaptation to any other river system in India. 

Details of usage of QUAL2E-UNCAS for water quality predictions will also 

be provided, along with a procedure for estimation of parameters, details of 

data modules etc., so as to provide guidelines for applications to other river 

systems. 

(b) Methodology Proposed (reproduced from the sanctioned proposal) 

A water quality management model generally falls into one of the two broad 

categories: Models belonging to the first category aim to minimize the waste treatment 

cost subject to the constraint that water quality standards are not violated at specified 

water quality check points in the river. Models of the second category maximize the 

water quality level subject to a constraint on total treatment cost. Since treatment costs 

are highly nonlinear, uncertain and are difficult to obtain both these approaches pose a 

difficulty in application. In the proposed study, the concepts of fuzzy set theory will be 

used to reflect the conflicting goals of the industries and the environmental agencies, 

avoiding the use of cost functions. Appropriate membership functions will be defined for 

the purpose. A major advantage of using the fuzzy sets and fuzzy optimization is that the 

apparently vague and unquantifiable goals may be effectively taken into account in an 

optimization model. The existing steady state BOD-DO models (e.g., QUAL2E model 

developed by the EPA) would be used for obtaining the dissolved oxygen concentration 
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at various water quality check points in the river. The BOD-DO model will define a set of 

constraints in the optimization model. Stochastic nature of the streamflows will be 

incorporated in the model, with appropriate probability distribution functions. The 

optimization problem will be formulated as a multi-objective model. A non-linear 

programming algorithm will be used to solve the model. Uncertainty of strearnflows will 

be incorporated through use of appropriate probability distributions. Fuzzy goals of the 

industries and the environmental agencies, along with the BOD-DO equations would 

form the major constraints of the model. The objective function would be formulated to 

reflect the conflicting nature of the various goals. The model application would be 

demonstrated through a case study. It is emphasized that only non-reactive pollutants will 

be considered in the study and no chemistry of the effluent reactions will be involved in 

the modeling. Only the BOD-DO relationships that are well defined in the literature 

would be used. The effluent is characterized by its BOD level only. This data is generally 

available for a given effluent. 

The model solution would provide the optimal treatment levels for the effluents, and the 

associated probability distribution for the DO concentration at various locations along the 

stream. The solution would be directly useful in determining the amount of the specific 

industrial effluents - characterized by their BOD levels - that may be discharged into the 

river at a given location, for a given level of probability of achieving a DO level. 

6. Any changes in the objectives during the operation of the scheme: 

The objectives were enhanced much beyond those proposed earlier, because a significant 

progress could be achieved in the project through two master level student theses. 

Specifically, the following objectives were also achieved, in addition to those proposed 

originally: 

(a) To conduct a First Order Reliability Analysis (FOR A) to identify the key 

variables and the key locations in the stream that affect significantly the water quality at 

critical (selected) checkpoints, and 

(b) To evaluate the risk of violation of the water quality, with the fractional 

removal levels prescribed, the FORA and sensitivity analysis. 

5 



7. Data Collected and Used in the Analysis, with sources of data: 

The project essentially forms a continuing contribution to ongoing research at liSe. A 

good deal of data has been collected for the case study of Tunga Bhadra river system (pl. 

see Fig 3, for a schematic of the case study). Specifically, the following data has been 

collected : Historical streamflow at Tunga-Bhadra junction, historical flows at the four 

headwaters : Tunga, Bhadra, · Kumudavat and Haridra, controlled releases from the 

Bhadra reservoir into the stream, meteorological data in the catchment, effluent discharge 

from the eight major dischargers: (a) Municipal discharges from Bhadravati, Shimoga, 

Davanagere, Harihar and Honhalli, and (b) Industrial discharges from Mysore Paper 

Mills (MPM), Harihar Polyfibers and Vishvesharaih Iron and Steel Limited (VISL). 

The data have been collected mainly from Water Resources Development Organisation 

(WRDO), Bangalore, Kamataka Pollution Control Board (KPCB) and Bhadravati town 

municipality. Some data has also been collected from industries. 

8. Methodology Actually Followed: 

Water quality management problems are characterized by various types of uncertainties 

at different stages of the decision making process. Uncertainty in water quality 

management models arises primarily from (i) randomness associated with different input 

variables of the model, (ii) uncertainty due to the water quality simulation model used, 

and (iii) imprecision (or fuzziness) associated with the goals of dischargers and the 

pollution control agency (PCA). 

Uncertainty due to randomness of variables and parameters of the river system has 

received due attention in the development of water quality management models. Major 

components of the river system that give rise to randomness are the quality and discharge 

characteristics of both headwater flow as well as effluent flows. These in tum render the 

water quality indicators (output variables of the water quality simulation model) random 

in nature. There are three widely adopted approaches for addressing randomness in water 

quality models (Takyi and Lence 1999). These are (i) chance-constrained optimization 

(e.g., Ellis 1987); (ii) combined simulation-optimization (e.g., Takyi and Lence 1994); 
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and (iii) the multiple realization approach (e.g., Burn and Lence 1992; and Takyi and 

Lence 1999). 

The second form of uncertainty, referred to as model uncertainty, arises because of 

simplifying assumptions used to derive mathematical relations between inputs and 

outputs in describing a complex process (Tyagi and Haan 2001). Cardwell and Ellis 

(1993) addressed model uncertainty by simultaneously considering multiple models, such 

as the Streeter-Phelps (SP) (Streeter and Phelps 1925) equations, QUAL2E (Brown and 

Barnwell 1987), and WASP4 (Ambrose et al. 1988) for a water quality management 

problem. 

The third form of uncertainty, that due to imprecision, is associated with description of 

the goals and quantification of desirable water quality. In water quality management 

problems, randomness is not the only relevant uncertainty, imprecision in management 

goals also has considerable importance. Setting up water quality criteria for any particular 

use of a water body is an example of uncertainty due to imprecision. A second example is 

assignment of permissible risk levels for violation of water quality standards. A 

management model that takes into account uncertainties due to both randomness and 

fuzziness may be expected to be a more realistic decision making tool for water quality 

management of river systems. 

Efforts have recently been made for simultaneous treatment of randomness and fuzziness 

in water quality management of river systems. Sasikumar and Mujumdar (2000) have 

presented a theoretical framework to include both randomness and fuzziness in river 

water quality management models. The concept of probability of a fuzzy event is used to 

link probability with fuzzy sets. Methods based on multiple scenarios and optimization 

(Burn 1989) and the multiple realization method (Takyi and Lence 1999) use Monte­

Carlo Simulation (MCS) to generate several possible scenarios of hydrologic, hydraulic, 

and pollutant-loading conditions. The probability distribution estimated by MCS 

generally closely approximates the exact one, provided the number of realizations is 

sufficiently large (Maier at al. 200 1). A major disadvantage of MCS, however, is its high 

computational requirements. To overcome this limitation to a certain extent, First-Order 

Reliability Analysis (FORA) can be used. FORA, introduced for water quality problems 

by Burges and Lettenmaier (1975), helps in identifying the combinations of model input 

7 



parameters and variables that are most likely to result in the failure of the system. It also 

helps in screening the key checkpoints (i.e., locations with high variability of the water 

quality indicator) where risk due to uncertainty is likely to be high. In the present study, 

FORA is used to identify the key variables and key checkpoints in the system, and MCS 

is applied to obtain the frequency distribution of water quality indicator levels at the key 

checkpoints with respect to the key input variables .. The work demonstrates a procedure 

for evaluating fuzzy risk using FORA and MCS methods applied to the QUAL2E­

UNCAS model (Brown and Barnwell 1987). 

The methodology of computing the fuzzy risk is illustrated in Figure 1. The set of optimal 

fractional removal levels are determined using the fuzzy waste load allocation model 

(FWLAM). The simulation-optimization approach developed by Mujumdar and 

Subbarao (2003) is followed for implementing the FWLAM. FORA identifies the key 

input variables and parameters and also determines the key checkpoints in the river 

system. The frequency distribution of the water quality indicator levels at the key 

checkpoints with key variables and parameters treated as random, are obtained from 

MCS. Appropriate membership functions are assigned to the fuzzy set of low water 

quality. The frequency distribution of the water quality indicator level along with the 

fuzzy membership functions are then used to evaluate the fuzzy risk of low water quality 

at the key checkpoints. 

FORA MCS 
Statistics 

Key & 
Base Random 

t> Random Variables Frequency C> Variables & C> Distributions at 
Locations Key Locations 

Water Quality Standards 
& 

Desirable Levels 
[> fuzzy Membership functions C> 

Fuzzy 
Risk 

Fig. 1. Evaluation of Fuzzy Risk (Note : FORA : First Order Reliability Analysis; MCS : 
Monte Carlo Simulation) 
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8.1FWLAM 

The fuzzy waste load allocation model (FWLAM) developed by Sasikurnar and 

Mujumdar (1998) forms the basis for the optimization model developed in this section. 

The FWLAM is described using a general river system. The river consists of a set of 

dischargers who are allowed to release pollutants into the river after removing some 

fraction of the pollutants. The acceptable water quality condition is ensured by checking 

the water quality in terms of water quality indicator levels (e.g., DO concentration) at a 

finite number of locations which are referred to as checkpoints. In a water quality 

management model, the concentration level of the water quality indicator is expressed as 

a function of the fractional removal levels for the pollutants released by the dischargers in 

the river system. An optimization problem is formulated with the set of fractional 

removal levels and the minimum satisfaction level forming the decision variables. In the 

FWLAM, the following fuzzy optimization problem is formulated to take into account 

the fuzzy goals of the PCA and dischargers. 

Maximize A. 

subject to 

[ 
L MIN) 

max X linn' x,mn ~ 

'\/ i, I 

'\/ i , m, n 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

where c11 is the concentration level of water quality indicator i at the checkpoint I of the 

river system. The PCA sets a desirable level, c;f and a minimum permissible level, c,~ 

for the water quality indicator i at the checkpoint I ( c;f ~ c~) which form the bounds on 

c11 as shown in crisp constraint ( 4). Similarly, x,mn is the fractional removal level of the 

pollutant n from the discharger m to control the water quality indicator i in the river 

system. The aspiration level and maximum fractional removal level acceptable to the 

discharger m with respect to x,mn are represented as, x,~n and x::,n, respectively. The 

PCA imposes minimum fractional removal levels that are also expressed as the lower 
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bounds, x'::,: in constraint (5). The upper bound, x::,:;x of the same constraint represents 

the technologically feasible maximum fractional removal level. Observing that the 

maximum acceptable level of pollutant treatment cannot exceed the technologically 

possible upper limit, x::,n is always considered the upper bound of constraint (5). The 

fuzzy goal f.lE (crl) in constraint (2) is the goal of the PCA to make the concentration 
tl 

level, ctl of the water quality indicator i at the checkpoint l as close as possible to the 

desirable level, c,~, so that the water quality at the checkpoint l is enhanced with respect 

to the water quality indicator i, for all i and l. Similarly, f.lF (ximn) in constraint (3) is tmn 

the goal of the discharger to make the fractional removal level x,mn, as close as possible 

to the aspiration level, x,:n for all i, m , and n . The membership functions f.1Etl and 

f.lF indicate variation of satisfaction levels of the PCA and dischargers with respect to 
""" 

the water quality indicator and fractional removal levels, respectively. The constraints (2) 

and (3), thus, define the parameter A as the minimum satisfaction level in the system. 

The parameter A also is a decision variable in addition to the set of fractional removal 

levels, in the optimization problem. Crisp constraints (5) and (6) determine the space of 

alternatives. It may be noted that if the preferred maximum treatment level of the 

dischargers x::,n is less than the prescribed minimum x::,~n of the PCA, the solution would 

be infeasible. This leads to a case of complete conflict between the enforcing agency and 

dischargers. 

Substituting expressions for the membership functions of the fuzzy goals f.lE and f.lF 
tl tmn 

(Sasikumar and Mujumdar 1998) in the constraints (2) and (3), respectively, the 

mathematical formulation of the fuzzy optimization is written as follows: 

Maximize (7) 

subject to 

(8) 

(10) 
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[ 
L MIN] max x,mn' x,mn :$; Vi,m,n (11) 

(12) 

The exponents, au and /3;mn, appearing in constraints (8) and (9), respectively, are non-

zero positive real numbers. Assignment of numerical values to these exponents is subject 

to the desired shape of the membership functions and may be chosen appropriately by the 

decision maker. The concentration of water quality indicator cu in constraints (8) and 

(10) is determined using a water quality simulation model. In this study, the water quality 

simulation model QUAL2E, developed by the US Environmental Protection Agency 

(EPA) (Brown and Barnwell 1987) is used to estimate c,,. Inclusion of QUAL2E as the 

simulation model and the presence of the exponents, a,, and f3,mn , appearing in the 

constraints (8) and (9) render the optimization problem non-linear. The Genetic 

Algorithm (GA), which is known for efficiently achieving global or near global solutions, 

is chosen as the optimization tool to solve for the decision variables x,nn and 1. The 

optimization problem is solved with a simulation-optimization (S-0) approach. Since the 

GA is an unconstrained optimization technique, it is complemented with the 

Homomorphous Mapping (HM) (Koziel and Michalewicz 1999) method to handle the 

GA population 

8--- -
~ 

--. 

Chromotome 
NoU: X • { x 1'""for alii, m, and n} 

-; z { x. ).} 
s,= {cuforl and I} 

y = { -1<= Yp<=1 :for p=1 to /c) 
--,.. __ ..-J<--• fltneea fuction 

t 
(Maximise A) 

[-~lc -
- -;: _ Computation of 

r---y ~-- / contact point$ 
·- --- .. -------\--------- -- . ---- -.- - . . . . 
~ assigning 
"T" value, q b 

I 

set of • validation 
oontact .. of 
points qb : contact points 

Homomorphou• Function 

X 

Fuzzy 
CONtralnta 

Fig. 2 Interaction between QUAL2E and genetic algorithm 

11 



constraints. Interaction among GA, HM, and QUAL2E is shown in Figure 2. Each 

chromosome of the GA is designed to represent the set of fractional removal levels, x,mn, 

and the satisfaction level, A , which are all decision variables of the optimization 

problem. The chromosome is coded in [ -1,1 ]'c (where lc is the length of the 

chromosome) cube. It means that each element of a chromosome (which is called a gene) 

represents a real number between -1 and 1. HM, after having multiple interactions with 

the simulation model QUAL2E, maps the [-l,lt cube to a feasible solution whose 

fitness function then is found. In the present case the decision variable, A, acts as the 

fitness function for the chromosome. A similar procedure is followed for evaluating the 

fitness functions of all the chromosomes of the population. After evaluating the fitness 

functions, the GA applies the operators - reproduction, crossover, and mutation - to 

generate a new population with improved solutions. The procedure of fitness function 

evaluation of all the solutions in the new generation is repeated using QUAL2E. In a 

similar way, GA, HM, and QUAL2E are conjunctively used over the generations until the 

global solution criteria are met. The solution corresponding to the highest fitness function 

in the last generation is taken as the optimal solution with the objective function value 

equal to the fitness function. Again a fixed number of iterations are performed with a 

different set of GA parameters. In a similar way, different runs are made with different 

parameter sets to validate the optimal solution. The maximum of all such optimal 

solutions obtained after performing various runs is taken as the final solution for the 

purpose of risk evaluation. 

A simulation run of QUAL2E with respect to the optimal solution yields the spatial 

distribution of the water quality indicator level, c,. The checkpoints having the critial 

water quality indicator levels are chosen for evaluating the fuzzy risk of low water quality 

in the river system. 

8.2 Fuzzy Risk of Low Water Quality 

The conventional water quality criteria at checkpoint l is such that any concentration of 

the water quality indicator less than a specified value, say, c,7, corresponds to a low water 

quality. This leads to a very stringent definition of low water quality. To overcome this 
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limitation and to account for imprecision in the description of low water quality, 

Sasikumar and Mujumdar (2000) and Mujumdar and Sasikumar (2002) have introduced a 

fuzzy set based definition in place of the crisp set based definition of low water quality. 

The set of concentration levels corresponding to the low water quality is defined as a 

fuzzy set, W,, . Each concentration level in the fuzzy set, W,, , is assigned a membership 

value that lies in the closed interval [0, 1]. Mathematically, the fuzzy set, W,,, is 

expressed as follows: 

(13) 

The membership value, 1-'w ( c,,) , of the fuzzy set, W,, , indicates the degree of ,, 
compatibility of the concentration level with the notion of low water quality. The fuzzy 

risk of low water quality is defined as the probability of occurance of the fuzzy event of 

low water quality. Mathematically, this can be stated as follows: 

fuzzy risk= P(fuzzy event of low water quality) (14) 

= P (low water quality) (15) 

where P denotes the probability of a fuzzy event. The fuzzy risk is computed as, 

(16) 

where f.lw (c") is the membership function of the fuzzy set W,, of low wat~r quality, ,, 

cmax is the maximum concentration level, and f(c,,) is the probability density function 
" 

(PDF) of the concentration of water quality indicator i at the checkpoint I in the river 

system. The fuzzy risk of low water quality at a checkpoint indicates the expected degree 

of low water quality and is a more general form of the crisp risk that indicates the 

probability of occurance of a low water quality event. 

The fuzzy risk defined in Equation (16) is determined at key locations of the river. 

Sensitivity Analysis and FORA assist in identifying the key locations and key random 

variables influencing the uncertainty of the model. 
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8.3 First-Order Reliability Analysis 

Reliability-analysis methods like First-Order Reliability Analysis (FORA) and Monte­

Carlo Simulation (MCS) are based on multiple simulations and account for the combined 

effects of parameter sensitivity and parameter uncertainty in the identification of key 

input variables affecting the uncertainty of the model (Melching and Yoon 1996). An 

advantage of FORA over MCS is that, for suitable problems, it demands much less 

computational effort than MCS. However, generally, the probability estimated by MCS 

approximates the exact value more closely as compared to other methods (e.g., Maier et 

al. 2001). Considering these aspects, FORA is used for identifying the key variables, 

whereas MCS is used to obtain the frequency distribution of Ca. However, MCS could be 

done without FORA for prediction of the uncertainty. FORA is used to provide quick 

evaluation of key parameters and locations. 

FORA uses a first-order approximation of the relation between input and output variables 

for computing variances in multivariate situations. In FORA, a Taylor series expansion of 

the simulation model output is truncated after the first-order term (Melching and Yoon 

1996). 

Nh 

Yv = G(Xu.) + ~:c XII - xue) ( oG/fJxll) XIIC (17) 
u-1 

where Yv is the concentration of the constituent simulated in the selected water quality 

model; G() is the functional representation of the procedures simulating the constituent. 

G() may be mass balance equation which forms the basis for the QUAL2E wa,ter quality 

model; X,'" is the vector of uncertain basic variables (e.g., model input variables, model 

parameters, etc.) representing the expansion point; X
11 

is the vector of uncertain basic 

variables; and Nb is the number of basic variables. 

In FORA applications to water quality management problems, the expansion point is 

commonly assumed to be the mean value or some other convenient central value of the 

basic variables. For non-linear systems, this assumption may lead to inaccurate 

estimation of mean and variance of the model output variable. Also, FORA is normally 

limited to problems where the random variables have relatively low variance (e.g., CV of 

less than about 25%). As FORA is applied in the present work only for identifying the 
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key basic variables of the system, but not for quantifying the uncertainty of model output 

variables, this limitation of FORA may not be very serious in this case. Thus the expected 

value and variance of the model output, when the expansion point is considered at the 

mean value of the variables, are: 

(18) 

where CY Yv is the standard deviation of Y. ; and X uM is the vector of mean values of the 

basic variables. In the above equation, subscripts ua and u6 E u. If the basic variables are 

statistically independent and derivatives are computed numerically, then 

nh 

var(y.) = 0'_~" :::: 2) (~:!,.GituJ~uM var(xJ ] 
u=l 

(19) 

The normalized sensitivity coefficient (NSC) which represents the percentage change in 

the output variable resulting from a unit percentage change in each input variable is 

computed as follows (Brown and Barnwe111987; Melching and Yoon 1996), 

Suv = (~:!,.y)y.) I (tu) xJ (20) 

where Suv=normalized sensitivity coefficient for output Yv to input Xu ; xu=base value of 

input variable [e.g., flow, DO, biological oxygen demand (BOD) values of headwater]; 

llxu=magnitude of input perturbation; Yv=base value of output variables (e.g., DO of the 

river) ; and LlYv =sensitivity of the output variable. The ranking ofNSC helps in 

identifying the key variables affecting the output variable of the river system. 

FORA has been successfully applied to water quality models (Burges and L~ttenmaier 

1975; Chadderton et al. 1982; and Melching and Anmangandla 1992), despite conceptual 

problems like the assumption of linearity in the functional approximation. FORA is 

performed initially at a few locations (or checkpoints), where the model output variables 

are likely to have a significant variability in magnitude. The key locations are identified 

based on the variance of the output variables at all the locations. Monte Carlo Simulation 

(MCS) is then applied at the key locations with key variables as the input random 

variables to obtain the frequency distribution and statistical parameters of the estimated 

output variable. The source of water in the river system includes distributed flow (or 
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incremental flow) in addition to the headwater and point load flows. The distributed flow 

addition to the river may be due to runoff from predominantly either agricultural or forest 

areas and will accordingly affect the water quality in the river. In this work, the fuzzy risk 

is computed for the case study with and without nonpoint source pollution through 

incremental flow and the contribution of incremental flow to the fuzzy risk is discussed. 

® {i) (!) 
Turcll Bhldrl RMI' 

• 
• 

INOlA 

-.. --~~ 
Boaadlry 

_ ,StidD . 

~ 

Fig. 3 Location map and schematic diagram of Tunga-Bhadra river system 
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8.4 Model Application 

Application of FORA to the fuzzy waste load allocation model is illustrated through a 

case-study of Tunga-Bhadra River system shown schematically in Figure 3. The Tunga­

Bhadra River is a perennial river formed by the confluence of Tunga and Bhadra Rivers, 

both tributaries of the Krishna River, in southern India. The river has two other 

tributaries, the Kumadavati and Haridra Rivers. The river receives the waste loads from 

eight major effluent points which include five industrial effluents and three municipal 

effluents. The model is applied to a river stretch of 180 km that comprises the four 

headwaters (Tunga, Bhadra, Kumadavati, and Haridra) and eight point loads (five 

industrial and three municipal effluents). To keep emphasis on simultaneous treatment of 

randomness and imprecision, the example is kept simple by considering only one water 

quality indicator, the DO. 

FORA and MCS are implemented using the uncertainty version of QUAL2E, VIZ., 

QUAL2E-UNCAS (Brown and Barnwell 1987). Some recent work that applied 

uncertainty analysis to QUAL2E includes that of Melching and Yoon ( 1996) in which 

QUAL2E was used to determine the data required for reducing the model-prediction 

uncertainty in a water quality model, and of Han et al. (200 1) where a reliability model 

was developed modifying QUAL2E-UNCAS for stochastic water quality analysis of 

downstream reaches of a river in Korea. Some limitations of the QUAL2E-UNCAS 

model are that it does not incorporate the effect of periphyton production on DO, and it 

does not consider non-point or diffuse sources of nutrients or oxygen demanding sources 

(Maier et al. 2001). 

17 



Table 1 Uncertainty information of basic variables 

Generic 
group Basic ,·ariable 

Coefficient 
of nriation Source 

(o'o) of data 

Temperature Biological oxygen demand decay 3.0 

coefficients 

Hydraulic 

rnriables 

Renction 

coefficients 

Initinl 

temper<ltme 

Disso!Yecl oxygen ner<ltion 

Disper~ion correction 

conswnt 
Mmuting·s rouglmess 

Side slopes 

Bottom width 

Slope of chatmel 

Chemical biological oxygen 

demand oxidation mte 

Reaeration rate 

Initial temperamre 

Incremental Dischnrge 
flo\\· 

Hendwater 

flow 

Point load 
flow 

Temperature 

DissolYed oxygen 

Biological oxygen demand 

Discharge 

Tempera !lire 

DissolYed oxygen 

Biological O:\.)'geu demand 

Discharge 

Tempera !lire 

DissolYed oxygen 

Biologicnl oxygen demand 

~QCAL2E -v"'KC A.S nulmwl. 

b;vrelchiug and Yoon (1996). 

cHic;toticnl dnt<l . 

8.4.1 Data Selection 

3.0 

50.0 

5.0 

5.0 

5.0 

5.0 

30.0 b 

50.0 b 

10.0 

2i .O 

S.O 

5.0 

10.0 

.27.0 

s.o 
5.0 

10.0 

22.4 

S.O 
5.0 

10.0 

The most important aspect of applying reliability-analysis methods, VIZ., FORA and 

MCS, for assessing the statistical parameters of DO concentration is to characterize the 

uncertainty in the individual input variables required for the QUAL2E-UNCAS modeL In 

18 



QUAL2E-UNCAS, the uncertainty information is provided in two forms: (i) the 

coefficient of variation or relative standard deviation (CV), and (ii) the specification of 

the PDF for each input variable. Table 1 presents the uncertainty information that is used 

in the present uncertainty analysis (UA). The data of the Table 1 includes the list of the 

basic variables (both natural variables and model parameters) considered in the analysis, 

with their CV values, and the source of the CV data. The historical data of the Tunga­

Bhadra River system provides information on discharge and temperature characteristics 

of river and point load flows. 22 years of mean annual flow discharge data obtained from 

daily flow records of a government agency (Water Resources Development Organization, 

Bangalore) are used in arriving· at the CV of the headwater flow. The value of 

incremental flow is calculated based on the guage stations located in Bhadra (Reach 1 ), 

Tunga (Reach 4) and Tunga-Bhadra (Reach 7) Rivers. Difference between flow at 

Tunga-Bhadra guage station and sum of the flows at the Bhadra and Tunga guage stations 

is the flow incremented distributively. The ratio of this difference to the length between 

the guage stations gives the distributed flow per unit distance, which is 0.34 m3/slm in 

the present case. This value is used as incremental flow throughout the river stretch, to 

account for the nonpoint source pollution due to runoff. In Indian situations, agricultural 

sources form only a part of, but do not dominate, the contribution from diffuse pollution 

in case of BOD (Agrawal, 1999). The nonpoint BOD pollutant is primarily contributed 

by rural communities, animal husbandry and on-stream activities in India. To 

conservatively account for uncertainty arising out of lack of adequate data on nonpoint 

source pollution in the present case, a high value of 30 mg/L for BOD and a low value of 

4 mg/L for DO are used for the incremental flow in the analysis. The CV of the 

incremental flow, BOD and DO are assumed same as those of headwater flow. The CV 

values of the temperature coefficient, DO, BOD, and all hydraulic variable data except 

reaeration and deoxygenation rate coefficients are selected from the typical range (the 

other two ranges being low and high) for QUAL2E-UNCAS applications in Brown and 

Barnwell (1987, p. 86). The CV values of CBOD (carbonaceous BOD)and deoxygenation 

rate are obtained from Melching and Y oon (1996).The CV s of point, head_yvater and 

incremental inflow discharge and temperature were determined from historic data. Based 

on the literature (Melching and Y oon 1996), all the input variables except headwater flow 
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are assumed to follow a normal distribution for the purpose of analysis. A log-normal 

distribution is used for the headwater flow. 

In the analysis, input variables are assumed to be uncorrelated, because of lack of 

adequate data to estimate the correlation structure. If the variables are positively 

correlated, the assumption of statistical independence results in under-predic!ion of the 

overall-model uncertainty. However, as described in the following section, the 

uncertainties in a few variables almost completely dominated the uncertainty of the 

simulated DO. These variables most likely have strong correlations between reaches. It 

may be noted that these variables are also the variables identified as key variables in 

FORA. In cases where the key variables identified by FORA contribute nearly all the 

output uncertainty, these results would be unlikely to change if variable correlations were 

considered (Melching and Y oon 1996). 

The other important data necessary for performing the uncertainty analysis (UA) are the 

base values of all input variables of the model. For determining optimal waste load 

allocations for dischargers to the system, the values of discharge, DO of headwaters, 

point load flows and temperature are selected with respect to adverse conditions (e.g., 

low flow, low DO, high temperature, etc.) prevailing in the river system. For example, a 

value of 131.75 m3 Is is taken for Tunga River headwater flow, while it's mean value is 

166.89 m3/s. This yields conservative optimal waste load allocation to the dischargers. In 

the uncertainty analysis, however, the discharge, DO, and temperature are assigned 

values equal to their mean values given in Tables 2 and 3 to reflect general conditions of 

the river system. Thus, the mean value of simulated DO in FORA will be equal to the 

value obtained from the QUAL2E run corresponding to the base values of the input 

variables. For other variables, (e.g., hydraulic and reaction coefficients, etc.) base values 

assigned for the determination of optimal fractional removal levels are used in the UA. 

For solving the S-0, BOD and DO are taken as the pollutant and water quality indicator 

(i = n = 1), respectively. Linear membership functions are considered (ail =1 and 

/3;mn =1) for the discharger and PCA goals in constraints (8) and (9). The optimal 

treatment levels and satisfaction level obtained from S-0 are given in Table 3. Both 

FORA and MCS are done with respect to the optimal fractional removal levels computed 

from the S-0 approach (Table 3). 
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Table 2. :tvfcan Values for Head Water Flow Conditions 

Di5c;ol\'ed oxygen Biological oxygen 
Rinr flo\,. concentration demand concentration 

RiYer (m3/s) (mg/L) (mg!L) 

Bll<Hirn 17.80 6.5 

Tungn 166.89 6.5 

KumadnYati 14.94 6.5 

H<1ridra 13.90 6.0 

Table 3. Effluent Flo\Y Data and Optimal Fractional Remon! LeYels 

Biologic<1l oxygen Dissolnd Optun<ll 
demand oxygen Effluent fractiounl 

concentr<l tion concentration flow remoYal le,·eJa 

Discharger (mg/L) (mg/L) (m3/s) (%) 

Dt 1000 2.0 1.167 74.6 

n, 440 2.0 0.539 74.6 

D3 300 2.0 0.032 66.5 

D4 900 2.0 0.763 35.0 

D; ,.,, 
2.0 0.042 35 .0 

D6 600 2.0 0.225 35.0 

D7 .:150 2.0 1.672 35.0 

Ds 900 2.0 1.515 45 .0 
30btnined from fuzzy \Y::t5te load allocation model: optimal satisfaction 
le,·el. >, *=0.2S. 
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8.4.2 Screening of Basic Variables 

For carrying out FORA, 14 locations were selected based on the criteria of the lowest DO 

concentration in a reach and proximity of the locations (checkpoints) to the point loads 

and junctions. The DO concentrations are the result of a QUAL2E run with respect to the 

optimal fractional removal levels obtained from the S-0. Details of the locations and their 

significance are: Locations 1-3, (Reach 1, Computational Element 3), 2-3, 4-3, 7-1 0 are 

immediately downstream of point loads, where the lowest DO concentrations of the reach 

are observed in QUAL2E simulations. Locations 5-2 and 11-2 are downstream of the 

river junctions of the Tunga-Bhadra and Kumadavati Rivers, respectively. There is no 

significance to location 7-1, which is merely chosen to learn the effect of the uncertainty 

in the middle portions of the river. QUAL2E-UNCAS requires the perturbance 

percentage to the input variable. The NSC and variances are computed for 5% 

perturbation. The application of a 5% increment in the parameter values was 

recommended by Brown and Barnwell (1987) for uncertainty calculation in QUAL2E­

UNCAS (Melching and Yoon 1996). 

Details of the analysis carried out neglecting the incremental flow and nonpoint source 

pollution is fust presented. Table 4 shows the normalized sensitivity coefficient (NSC) 

matrix for the output variable, DO, obtained from sensitivity analysis. The sensitivity 

analysis of DO was done for all the basic variables listed in Table l.The sensitivity 

analysis has shown that the initial temperature has the highest sensitivity in all reaches 

except reach 4. The reaeration coefficient, headwater flow, headwater DO, pointload flow 

and point load BOD have a significant sensitivity (with NSC magnitude greater than 0.1) 

only at a few locations. An insignificant variable has a sensitivity coefficient equal to 

zero and near to zero values at all the 14 locations considered in the analysis. For this 

reason the NSC matrix of Table 4 shows sensitivity coefficients for DO concentration 

corresponding to only significant variables at the selected locations. QUAL2E-UNCAS 

performs sensitivity analysis only for 5 locations at a time (i.e., Locations 1-3, 2-3, 3-20, 

4-3, 5-2; 7-1,7-10,9-19, 11-2, 11-16; and 13-1, 13-12, 15-2, 15-19). During the analysis, 

if the NSC of any basic variable (e.g., headwater DO in Table 4) is found to be < 0.10 

for all the 5 locations, then the NSC is reported as < 0.10 in the coefficient matrix. For 

this reason, some of the NSC values are reported as < 0.10 in Table 4 at these 5 
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locations. NSC shows the variables affecting DO concentration. Initial temperature is the 

predominant variable affecting DO as shown by it having the highest NSC value in all the 

reaches except in Reach 4. The reaeration coefficient follows temperature in influencing 

DO with positive relationship although with a very low NSC. Other than these two 

variables, headwater DO also has an effect on DO, but only in locations 1-3, 4-3 and 5-2. 

In Reach 4 (Tunga river) headwater flow is considerably higher (166.89 m3/s)than any 

other headwater flow and this affects the sensitivity of DO significantly. In middle 

reaches, DO is invariant to perturbation in variables other than initial temperature and 

reaeration coefficient. This is possibly due to absence of point loads with high 

concentrations. 

The variance analysis gives the magnitude of variance in the DO concentration due to the . 
variance in an input variable. The contribution in percent of variance of each basic 

variable to the variance in the DO concentration estimated in QUAL2E-UNCAS with 

respect to the optimal allocation policy is given in Table 5. Similar to the sensitivity 

analysis, QUAL2E-UNCAS peforms variance analysis only for 5 locations at a time. 

During the analysis, if the variance of any basic variable is less than 1% for all 5 

locations, the value is reported as < 1% at those locations in Table 5. The results show a 

similar but a somewhat modified pattern relative to the normalized sensitivity 

coefficients. As seen from the table, temperature and reaeration coefficient account for 

more than 95% of the variability in DO concentrations at most locations. DO is more 

sensitive to temperature as is evident from both NSC matrix and percentage of variance 

matrix. Some marginal influence of other variables is observed in the last 4locations (13-

1, 13-12, 15-2, and 15-19). Headwater flow, headwater DO and point load BOD have 

effect both at initial (1-3, 2-3,3-20,4-3 and 5-2) and end locations (13-1, 13-12, 15-2 and 

15-19). The reasons discussed for NSC are valid here also for the dominance of 

headwater DO at location 4-3. BOD decay effect is slightly present in the first 2 locations 

and the last location. 
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Table 8. Sununary of Monte Carlo Sunulation for Dissolred Oxygen (wit!J I.ncremenral Flow) 

Ba;e Sinmlnterl Stnnclnrd Coefficient of 
Rench Elemell! mean mean Bias Minim 11m ~lnximnm cle,·inrion n tiation 

6.61 6.56 - 0.05 3.98 7. l.l 0.28 0.0~ 

·' 6.1 ' 6.11 -0.06 3.56 6.99 0.~0 0.07 

.:!0 6.85 6.83 001 6.0S ".OS 0.09 0.01 

6.62 6.62 0.00 5 79 -A! 0 26 0.0~ 

6.92 6.91 -00 1 5.96 7. 16 0.10 0.01 

1.1 6.9~ 6.9.:! - 0.02 6.13 7.09 0.09 0.01 

1.1 12 6. 75 6.73 - 0.02 5.89 6.98 0.12 0.02 

15 2 6.66 6.6~ - 0.01 5.67 6.93 0. 14 0.02 

15 19 6.63 6.61 -0.01 5.56 7.01 0.18 O.O.l 

Both NSC and percentage of variance are taken into consideration in screening the basic 

variables. Melching and Yoon (1996) have indicated that the NSC is not an appropriate 

way to determine the key parameters. The fraction of variance obtained from Equation 

(19) is a far more powerful and useful tool. It is seen that only temperature and reaeration 

coefficient influence DO to a significant extent and headwater flow, headwater DO, and 

point load BOD to a lesser extent in the river system. Though headwater flow, headwater 

DO, and point load BOD have influence only at the beginning and end locations, they 

also have been considered as key random variables in the MCS analysis. Since DO is 

invariant to all variables except initial temperature and reaeration coefficient at the 

middle (7-1, 7-10, 9-19, 11-2 and 11-16) locations, these locations are neglected in the 

MCS analysis. 

To examine the effect of nonpoint source pollution, FORA is carried out next by 

including the incremental flow. Tables 6 and 7 provide the results obtained from 

sensitivity analysis and FORA, respectively for this case. Except for indicating the 

incremental flow effect, the FORA results show same trend as in the case of non 

inclusion of incremental flows. Both the NSC and variance analyses indicate initial 

temperature and reaeration coefficient as major influencing variables at all the locations. 

Incremental flow, point load flow, headwater flow and BOD are observed as other 

influencing variables. Incremental flow has the greatest influence after temperature and 

reaeration coefficient in all reaches except Reaches 1 and 2. Since the incremental flow is 

added uniformly, its cumulative magnitude is small in the initial section, Reaches 1 and 

2. It may be observed that, at the locations away from point loads, the contribution from 

variance of incremental flow keeps building up on the downstream side. The point loads 
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in Reaches 11 and 14 change the magnitude and the trend. Based on FORA and NSC 

results, reaeration coefficient, initial temperature, headwater flow, headwater DO, BOD 

decay, incremental flow and point load BOD and flow are taken as basic variables. Since 

DO is invariant to all variables except initial temperature,reaeration coefficient and 

incremental flow at the middle (7-1, 7-10, 9-19, 11-2 and 11-16) locations, these 

locations are neglected in the MCS analysis. 

8.4.3 Monte Carlo Simulation (MCS) Analysis 

Table 8 contains the summary statistics (base mean, simulated mean, bias, minimum, 

maximum, range, standard deviation, coefficient of variation, and skewness coefficient) 

for simulated DO (simulated with MCS) concentration at the key locations identified 

from FORA for analysis neglecting and including the incremental flow respectively. The 

results show similar trends for the two cases of inclusion and non inclusion of 

incremental flows. The bias, shown in the tables, is the difference between base value 

(resulting when the mean values of all parameters are used in the simulation) and 

simulated mean of DO concentration, whereas range is the difference be~een the 

minimum and maximum of all simulated DO concentrations. Initial analysis of MCS, 

varying the number of simulations has shown that 2000 simulations are sufficient to 

achieve convergence of the statistics for the simulated DO variable. There is a good 

match between base and simulated means of DO concentration. Out of all the locations 

considered for MCS analysis, lowest values of simulated mean and minimum values and 

highest values of coefficient of variation are observed at location 2-3. This is the most 

critical location being immediately downstream of two high BOD loads. The trend of the 

statistical parameters are same at other locations, except for higher magnitudes in 

simulated mean, minimum, maximum values and lower magnitudes of coefficient of 

variation. 

8.4.4 Evaluation of Fuzzy Risk 

The fuzzy risk of low water quality is computed with respect to the output variable DO 

concentration. Since only one variable is considered for the evaluation of the fuzzy risk, 

the suffix, i, is dropped. Denoting the fuzzy set of low water quality, DO concentration, 
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and fuzzy risk of low water quality by w; , c1, and r1 , respectively, the fuzzy risk is 

rewritten in discrete form as: 

where cmin and cmax are the minimum and maximum concentration levels of DO 
I I 

obtained from MCS at checkpoint l. Figure 4 shows a typical membership function of 

low water quality, J..lw (c1), which is expressed as, 
I 

where y1 is the non zero positive real number defining the shape of the membership 

function at location l. The value of y1 may be selected by the decision makers based on 

their perception of low water quality to a given value of DO. c1° is set to 95% of the 

saturated DO concentration, since an achievement of saturation DO is nearly impossible, 

even in natural conditions. The value of c1L is set to 4 mg/L for the locations in Reaches 

1,2 and 3, and 6 mg/L for the other locations. The 95% of saturation and 4 mg/L bounds 

of the membership function are for illustration purposes only, and a more realistic, 

ecologically based membership function should be developed in future research. The 

frequency distribution obtained from MCS is used to compute the probability distribution 

function p( c1) in the Equation (21 ) . The membership function, J..lw ( c1) of Equation (22) 
I 

and frequency density function, p( c1) , at key location, l, are substituted in Equation 

(21). The fuzzy risk is evaluated between cmin and minimum of c max and desirable level 
I I 

8.4.5 Results and Discussion 

Table 9 represents the results of the fuzzy risk levels as well as permissible and desirable 

DO concentration levels at the selected key locations of the river for three different 

values of y . The fuzzy risk trends for the three y are same. r < 1 (0.8) and y > 1 (1.2) 

give higher and lower values compared to linear membership ( y = 1) based values and 
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reflect respectively pessimistic and optimistic perceptions of the decision maker. The 

results are discussed with reference to the linear membership function. Results for 

analysis without incremental flow show the highest fuzzy risk at location 4-3. The higher 

fuzzy risk level at location 4-3 compared to locations 1-3 and 2-3 indicates the effect of 

minimum permissible and desirable levels. cf at location 4-3 (6 mg/L) is more stringent 

than that of locations 1-3 and 2-3 (4 mg/L ). Setting of 6 mg/L at locations 1-3 and 2-3 

yields higher fuzzy risk level at those locations (43.51% and 66.45%) than at location 4-

3. Overall, the reason for higher fuzzy risk levels at 1-3, 2-3 and 4-3 is due to their 

location immediately downstream of high point loads. As the simulated mean DO values 

at many locations are greater than 6.5 mg/L with a very small variance, the number of 

simulated DO concentration levels that fall below c1L are nil and this results in zero fuzzy 

risk at those locations. 

In Reach 15, the reaeration coefficient is low compared to that in all other reaches. DO is 

much more sensitive to reaeration in this reach, as reflected in the high variance values 

for the reaeration coefficient at locations 15-2 and 15-19. This high variance resulted in 

low values of mean, minimum, and maximum DO values, and high standard deviation of 

DO at 15-2 and 15-19. These statistics when used in the MCS , result in a higher 

frequency of DO levels around minimum permissible level. With the fuzzy membership 

value close to 1 near the minimum permissible value of DO this resulted in a fiigh fuzzy 

risk at these locations. 

Inclusion of incremental flow in the analysis completely alters the trend and magnitudes 

of the fuzzy risk levels at all locations. In this case, highest fuzzy risk levels are obtained 

at the last reach due to the obvious reason of cumulative effect of incremental flow and 

nonpoint source of pollution resulting from it. The fuzzy risk considering the incremental 

flow may be seen as the sum of fuzzy risk with only point loads and fuzzy risk only with 

incremental flow. There are no factors other than the incremental flow that change the 

trend and magnitude of the fuzzy risk levels resulting from only point loads. 

The uncertainty analysis is also carried out with the low flow values used (e.g., 131.75 

m3/s for Tunga headwater flow) in deriving the optimal fractional removal levels, with a 

view to determine the risk under design low flow conditions. The CV of headwater flows 
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for this analysis was determined as 0.27 from the historic mean low flows. The key 

locations and key variables identified by FORA and sensitivity analysis were the same as 

those with mean flows. For both cases of neglecting and including incremental flow, the 

resulting fuzzy risk values at all locations were nearly same as those obtained with mean 

flows, except at the last two locations, 15-2 and 15-19. At these two locations the fuzzy 

risk values are 17.64% and 22.58%, respectively for the case of neglecting incremental 

flow (as against 11.31% and 13.29% with mean flows, shown in Table 11). The fuzzy 

risk at these two locations, with incremental flow are 46.99% and 52.29% respectively 

(against, 39.62% and 42.77% with mean flows shown in Table 11). 

The crisp risk, defined as P[c1 ::;; c1L], is also determined at the key locations. As the 

cumulative frequency of DO concentration level below 6 mg/L is near to zero in the case 

considering only point loads and low in the case considering incremental flow, the crisp 

risks are all negligible, being very low to zero. Since the fuzzy risk includes a wider 

range of DO concentration levels than the crisp risk, in general, the fuzzy risk values will 

be higher than the crisp risk. As seen from the membership function of low water quality, 

Figure 4, the fuzzy risk and crisp risk will both be equal to 1 only in the unlikely event of 

all simulated values of c1 being less than c1L. 
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Fig. 4 Membership function for fuzzy set, W, 
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8.5 General Remarks 

A procedure for risk evaluation in a river water quality control problem is developed in 

this project. The concept of fuzzy risk is used in the context of water quality-control 

problems. While the crisp risk denotes the probability of failure, the fuzzy risk indicates 

the expected degree of failure, and, thus, provides a more general measure of risk. To 

account for the uncertainty in the standards for determining a failure, occurrence of 

failure itself has been treated as a fuzzy event, in the work. The fuzzy definition of low 

water quality ensures that there is no single threshold value which defmes a failed state. 

All discrete water quality concentrations have been treated as failures of different 

degrees. The fuzzy set of low water quality maps all water quality levels to 

lowwaterquality and its membership function denotes the degree to which the water 

quality is low. The membership functions of the fuzzy sets are subjective statements of 

the perceptions of the decision makers. For example, the membership function for the 

low water quality indicates the decision maker's perception of the degree of lowquality , 

for a given level of water quality. The lower and upper bounds of the membership 

functions also are subjective, and in general depend on the particular problem being 

solved. To address such uncertainty in the lower and upper bounds of the membership 

functions the fuzzy membership functions themselves may be treated as fuzzy in the 

model and may be modelled using gray numbers (e.g., Chang et al. 1997). This, however, 

is not done in this work. It may be noted that allowing the lower limits of the fuzzy 

membership functions to be less than the normally used standard values such as 5 mg/L 

for DO, and shaping the membership functions with respect to biological information on 

DO requirements for aquatic life, for example, would be a useful application of the 

methodology presented. 

A fuzzy optimization model is first solved to obtain optimal fractional removal levels, 

and then, with these optimal fractional removal levels held fixed, the river system is 

simulated with the input variables treated as random. This implicit approach has the 

advantage of computational simplicity. Considering the random nature of input variables 

explicitly in QUAL2E and the optimization model would pose several computational 

difficulties associated with expressing the stochastic water quality simulation as a set of 

constraints in the fuzzy optimization model. With a number of variables treated random, 
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it would be impossible to solve a stochastic water quality simulation integrated into the 

fuzzy optimization model. To ovetcome these difficulties, the implicit approach is used in 

this work. The approach, however, has the limitation that the fractional removal levels are 

determined independent of the uncertainty in the DO concentrations, and, thus, will not 

be truly optimal. Future research may be directed towards integrating the two models, 

viz., the optimal fractional removal model, and the risk analysis model to derive policies 

that minimize the risk of low water quality while maximizing the goal satisfaction. 

The optimal fractional removal levels have been obtained from the fuzzy optimization 

model using critical values of influencing variables (e.g., low stream flow, high 

temperature, etc.), whereas the entire range of possible values of the variables is used in 

evaluating the implications of the optimal fractional removal levels. It may be noted that 

for the purpose of the risk evaluation presented in this report, it is not really necessary to 

employ FORA. The MCS could just be run with all parameters considered as uncertain at 

all possible output locations. Doing this, however, would necessitate modification of the 

QUAL2E code or making multiple UNCAS runs as the number of output locations in 

QUAL2E is restricted. The key parameters could be determined by a simple regression 

analysis between the model output and each input parameter. FORA was used in this 

work, mainly to provide a quick evaluation of the key parameters and key locations. 

Table 9. Fuzzy Risk at Key Locations Identified by First Order Reliability Analysis 

Withour incremental How With incremental !low 
Mininnm1 Desirable 

Distance pennissible level Fuzzy risk Fuzzy risk 

Location Reach Element from u/ s level (cfJ (cfl (r/) (%) (r/) (%) 

no. no. no. (km) (m~) (m~) 'Y=0.8 'Y=i.O 'Y=U 'Y=0.8 'Y=I.O 'Y=Ll 

I 3 4.00 7.13 22.35 15.74 11.17 24.88 17.9~ 13.02 

2 3 4.00 7.15 33.04 25.56 19.91 40.74 32.98 26.84 

.l 20 27 4.00 7.14 0.07 0.03 O.Ql 15.56 9.85 6.16 

4 4 3 6.00 7.09 47.51 41.13 35.90 49.22 41.81 37.53 

5 29 6.00 7.09 1.00 0.51 0.17 20.40 14.19 9.96 

6 13 130 6.00 6.97 0.00 0.00 0.00 0.04 0.02 O.Ql 

13 I~ 141 6.00 6.97 0.89 0.53 0.32 32.86 15.41 19.81 

15 2 143 6.00 7.06 16.47 11.31 7.88 47.33 39.62 33.31 

9 15 19 160 6.00 7.06 18.21 13.29 9.87 50.11 42.77 36.70 
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8.6 User Manual and Documentation of QUAL2K 

A detailed user manual and documentation is prepared for the use of the recently released 

model, QUAL2K, of the US Environmental Protection Agency (EPA). The purpose of 

this document is to help users in understanding the procedures for parameter estimation, 

discretisation schemes to be used in particular cases, interpretation of results and other 

related details through a case study, so that the software may be used for other case 

studies also. This document is submitted as a separate document along with this report of 

the project. 

9. Conclusion 

In this project, methodologies are developed for addressing uncertainties due to (a) 

randomness of variables (such as stream temperature, streamflow, friction resistance to 

flow, effluent flow and concentration, reaction coefficients etc) that influence the water 

quality in a stream, and (b) fuzziness associated with management goals and imprecision 

arising out of lack of adequate data. The methodologies are demonstrated with tlie case 

study of the Tunga-Bhadra river system in Karnataka, India. In addition, a user manual is 

prepared for use of the water quality simulation model QUAL2K, the latest model 

available as a free download m the HEC web page 

(http://v..ww.epa.gov/athens/wwqtsc/htmllqual2k.html). This manual, along with other 

case study details provided in this report, will be useful for analyising the water quality in 

a river system in the country. 

Publications Resulting from the Work 

Subimal Ghosh and P P Mujumdar, (2009) "Fuzzy Waste Load Allocation Model: A 

Multiobjective Approach" Accepted for publication in Journal of Hydroinformatics 

(Special Edition) (Pub: International Water Association, IWA). 

Subirnal Ghosh, and P. P. Mujumdar, (2006) "Risk Minimization in Water Quality 

Control Problems of a River System", Advances in Water Resources, Vol. 29, pp. 458-

470. (Pub: Elsevier, Netherlands) 
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