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CHAFPTER 1

INTRODUCTION

Traditionally, linear autoregressive moving average (ARMA) models of Box-Jenkins
type have been used 1o model streamflows at single/multiple sites at the annual/periodic
levels, The popularity of linear ARMA models for hydrologic time series analysis may be
due to their simplicity and the availability of a well-developed modelling framework in
the statistical literature for stationary processes and the availability of standard software
packages. In case of parametric models, bias corrections done 1o unbias skewness andior
correlations, estimated from small size samples, often cause some other undesirable
effects in the synthetic replicates generated. Transforming the non-normal historical
flows 1o normal, may lesud o distortion of the correlation struciure in the generated fows.
Moreover, the traditional parametric modeling framework directs the researcher's
aftention towards an efficient estimation of medel parameters under a certain metric for
the selected model form, Due 1o these limitations, researchers are attempting to propose

alternutive models that can perform better in modeling the streamilows.

Recently, Srinivas and Sninivasan (2000, 2001) have introduced the post-blackening
approach (Davison and Hinkley, 1997) for stochastic modeling of streamflows tha
exhibit both linear and nenlinear dependence present i the streamflow data. Their model
i5 basically n hybrid model that blends a linear parametric model with the moving block
bootstrap (MBEB), a non-parametric model, Although i1 is a certain improvement over the
traditional ARMA models, it requires further improvement in capturing the non-linear

effects. With a view to address this imitation, it may be worthwhile 10 go for completely



dats-driven models. Accordingly, the Artificial MNeural Network (ANM)-based hybrid
model is being proposed in this study for modeling the kind of annual streamflow data
that exhibit & complex dependence siructure, which is a blend of two non-linear data-

driven models, namely, ANN and Moving Block Bootstrap (MBB).

Seasomality of streamflow data adds a degree of complexity 1o the selection of an
appropriate stochastic model 1o fit the data, However, if the autocormrelation structure of
the observed datn exhibits sipnificant periodicity. then seasonal models that explicitly
incorporate a periodic dependence structure must be used (Rasmussen et al, 1996).
Varying degree of nonlinearity in the differemt periods/seasons, generation of
streamflows owing to mixed precipitation mechanisms, add w the complexily Rurther.
Such characteristics of the geophysical time series make the modeling of multi-season

streamflows a challenging task.

An ideal single site multi-season synthetic flow generation model should aim w0
reproduce; the summary statistics (meun, standard deviation and skewness) and marginal
distribution of observed flows at periodic and anmeal time scales; autocorrelation
structure of flows al aggregated annual level, within-year and cross-year serial
correlations; month-to-year cross-correlations; and non-linearity siationarity in the
underlying dependence structure. In addition. it should provide sufficient varety in the
stochastic simulations with a reasonable degree of smoothing and extrapolation. The
motivation for the method of periodic streamflow modeling presented in this research

work comes from a desire 1o develop a potential nonparametric stochastic model that is



effective in reproducing summary statistics, dependence structure and the salient features
of marginal distribution without compromising on smoothing, cxirapolstion and vanety
in simulations. Such an ideal model is expected 10 be effective in predicting storape

eapacity and eritical run characteristics that are of interest to the investigator.

Based on storage capacity, inflow paitern and demand, the reservoir systems can be
classified as over-year (or carry-over) and within-year systems. Within-yvear syvstems are
sensitive to seasonal variations of both inflow and draft, Studies that model the within-
year Storage-Performance-Yield {E;P-Y} relationships are more realistic. However, these
relationships are difficult 10 generalize due o the large number of parameters associated
with periodic stochastic streamflow models. Reservorrs, in which filling and emptymg
phuses do not take place on an annual basis, bul over a number of years, are known as
OVEr-vear reservoirs, in which over-year storage effects predomminate. Whenever zevere,
long-stretched deficits (shoriages) in water supply are to be handled in a river system,

carry-over storages become important and high storage capacities are provided for the

reservoirs in such systoms,

The operational performance of a water supply reservoir is usually expressed in terms of
performance indicators that describe the failure characteristics, namely the frequency, the
duration end the severity of failures. That is, rehability, resilience and vulnerability
together characterize "risk” in the reservoir planning and operation context. The Storage-
Performance-Yield (S-P-Y) relationships are useful in identifying the sensitive ranges of
storuge capacity of the over-year reservoirs, with regard to performance charscteristics;

and in selecting between capacity expansion and demand management options, in case of



deficit water supply systems. Such relationships need to be developed for aver-year
reservoir systems, in generial and on a case by case basis for within-year reservoir

systems.

During drought periods and even when drought is impending, effective demand
management strategies must be devised o reduce the severity of shortage by distributing
the deficits over longer periods. Hedging is one of the simple and common demand
management strategies emploved by water supply managers to reduce the severty of
droughts. Hedging increases water stored in the reservoir by accepting small currents
deficits to guard against unacceptable large deficits that may occur in future. Hedging

rule decides the storage allocation of water across time to minimize the impact of the

drought.

Althaugh there have been a number of hedging rules proposed in the literature, such as
the diserete and the continuons hedging niles proposed by Shih and Revelle (1994, 1995),
supply and demand based hedging rules such as the one proposed by Srnivasun and
Philipose (1998), & relative evaluation of these rules and their adequacy in terms of
performance during water shortages have not been analyzed in detail. There is also a need
to obtain optimal hedging policies using each of these rules and investigate them by
detailed evaluation by simulation. Also, it may be worthwhile 1o propose a new hedging
rule that will improve the overall performance of both over-year and within-year water

supply reservoirs,



CHAPTER 2

NONLINEAR DATA-DRIVEN MODEL FOR ANNUAL
STOCHASTIC STREAMFLOWS

1.1 INTRODUCTION

Traditionally, lintar autoregressive moving average (ARMA) models of Box-Jenkins
typ¢ have been used to model streamflows ot single‘multiple sites st the
annual‘perindic levels and the same have been described at length in texis on the
subject (e.g., Salas et al, 1980; Salas, 1993; Loucks ot al, 1981). The physical
justification for the wse of ARMA models in the context of modelling the annual
streamflows s described in Salas et al. (1980). The anpual streamflows are
represented by mixed autoregressive and moving sverage processes.  The flow
recession during dry periods thal may have significant persistence and small variation,
can be represented by autoregressive (AR) processes. The high flows due to large
rainfall andfor snowmel could be represented through sddition of the Moving Avernge
(MA) component.  The popularity of lineor ARMA models for hydrologic time series
snalysis may be due to their simplicity and the availability of a well developed
modelling framework in the statistical literature for stationary processes and the
availability of stundord software packages such as STATGRAPHICS (1984), IMSL
{1984), SAS (1938), WASIM (McLeod and Hipel, 1978), LAST {Lane and Frever,
1990), SPIGOT (Grygier and Stedinger, 1990), and CSUPAC] (Salas et al, 1992).
However, there are a number of dmwbacks of the Box-lenkins type of models as
pointed out by Lall and Shorma (199%6), Tarboton ctal (1998) and Srinivas and
Srinivasan (2000). Furthermore, in case of parametric models, bias corrections are
often applied to unbias skewness andfor correlations, cstimated from small size

samples,  These corrections in turn give nse o some other undesirable effects in the



synihetic replicates generated (for imstance, unbiasing skewness may result in
increased varance of the same; transforming the non-nommal historical flows to
normal, may lead to distortion of the correlation structure in the generated flows).
Moreover, the traditional parametric modeling framework directs the researcher’s
attention towards an efficient estimation of model parameters under a cerfain metric
(e.z.. least squares or maximum likelihood) for the selected model form. On the other
hand, the performance metric of interest to the hydrologist or the water resources
planner need not be optimal, for the same. This is one al the main reasons 1o consider
the usage of Mlexible, adaptive, data explomtory methods, instead. Moreover, classical
ARMA models are optimal only under sguared error loss and only for linear operations
om the variables. While, the risk/loss functions associated with hydrologic decisions
are known to be asymmetric. In addition, incorporation of parameter uncertainty into
the parametric time series models (Stedinger snd Taylor, 1982; Grygier and Stedinger,
1990}, is quite imvolved and not that simple to be undersiood or applied by practising
hydrologists,

Despite making a large family, all Box-Jenkins models are essentially of shuri-memory
type; that is, their astocorrelation structure decreases rapidly with the lag time. Hence,
such models are inadequate in stochastic hydrology, if the long-torm persistence of
hydrologic (and other geophysical) processes is to be modelled. This property
discussed by Hurst (1951), is related to the observed tendency of anneal streamflows
tor stay above or below their mean value for fong periods. As a result, these model are

not abie to predict eritical run charncteristics efficiently.



Oither classes of models such as fractional Goussian noise (FGN) models (Mandelbrot
and Wallis, 196%.b.c), fast fractional Gaussian noise models (Mandelbrot, 1971),
broken line models (Mejia et al, 1972) are more appropriate to model long-term
persistence {Bras and Rodrigucz-lturbe, 1985, pp.210-280), However, FGN mnd FFGN
maodels have several weak points such as paremeter estimation problems, narrow range
of autocorrelation functions that they can preserve, and their inability (o perform in

multiveriate problems { Koutsoyiannis, 2000},

While nonlinear models (Bendat and Piersol, 1986; Tong, 1990) can be used in place
of the finear ARMA models, these nonlinear models require specifying the form of
nanlinear dependence prior to the parameter estimation which may not be easy for the
practitioner. Maoreover, m o multi-site modeling context, this becomes a ledious
exercise, especially if the model structure and the probability distributions that
describe the flows at the different sites vary, From the practitioner’s perspective, the
key issues are reproducibility of the observed data characteristics, simplicity,
dependability and robustness. Owing to the difficultics associated with the parametric
methods in terms of parameter estimation, assumptions regarding the marginal
probebility distributions and the dependence structure of the variable of interest,
nonparameiric methods are becoming popular in stochastic hydrology In the last one
decade. Readers are referred to Lall J1995) for an overview of nonparametric

applications to hydrology.

The bootstrap (Efron, 197%) is the simplest nonparametric technique for simulating the
probability distribution of any statistic. The use of bootstrap methods in time series
analysis is receiving considerable attention in modemn statistics, as documented by

Lepage and Billard (1992), Efron mnd Tibshirani (1993), and Davison and Hinkley



{1997}, Kiinsch (1989) proposed the moving block bootstrap (MBH) for resampling
dependent data. This technique consists of dividing the data into blocks of observations
and resampling the blocks randomly with replacement. In this method, though the
origingl dependence structure is preserved within the blocks, it is lost at boundaries
between blocks {Davison and Hinkley, 1997). This poses difficulty in preserving the
dependence structure present in hydrologie records, as the available sample sizes are
small. Lahiri (1993} addresses the limitation of MBB in statistical literature. In
hvdmologic literature, Srinivas and Srinivasan (2000, 2001) bring out the inefficiency

of MBB in simulating stream flows at annual and periodic time scales.

In the last decade, Lall and Sharma (1996) proposed K-nearest neighbor (k-NN)
bootstrap for resampling dependent hydrologic data. Multivariate nearest neighbor
probability density estimation provides the basis for the resampling scheme. A discrete
kemel is used w0 resample froom the successors of k-nearest neighbors of the
conditioning vector (Rajagopalan and Lall, 1999, Sharma and Lall, 1999, Kumar et al.,
2000). The nearest neighbor bootstrap and its varistions may be preferable if the daia
are plentiful, as in case of daily streamflow modeling (Lall and Sharma, 1996). The
investigations by Srinivas and Srinivasan (2001) report that for historical time séries
with strong dependence, the &NN model does nol simulate the run characleristics
satisfactorily (validation sunistics as per Stedinger and Tavlor, 1982), plausibly due to

inadequate preservation of higher lng serial correlations.

A limitation. of the aforementioned NP methods is that gimulations from these
resampling methods can neither fill in the gaps between the data points in the observed
record nor extrapolate beyond the observed extrema. In the last decade, kemel-based

nonparametric methods were propased for streamflow simuolation (Sharma et al,



1997), streamflow dissggregation (Tarboton € al., 1998) and for generation of
multivariate weather variables (Rajagopalan et ol., 1997) with a view 1o alleviate the
limitation of the bootstrap methods. However, these methods demand considerable
compuiational effort for the estimation of bandwidth in higher dimensions. Morncover,
the kemel methods suffer from severe boundary problems, especially im higher

dimensions, that can bias the simolations (Prairie, 2002).

Recently, Srinivas and Srinivasan (2000, 2001) bave introdvced the post-blackening
approach (Davison and Hinkley, 1997) for stochastic modeling of streamflows that
exhibit complex dependence. Herein, complex dependence refers (o both linear and
nonlinear dependence present in the annual streamflow data. The different segments of
the datn based on thresholds (such as low flow, medium flow and high flow)] may
exhibit different dependence structures within the segments as well as between the
segments, The model proposed by Srinivas and Srinivasan (2000) is basically a hybrid
model that blends a linear parametric model with the moving block bootstrap (MBE), a
nom-pammetric model. In this modeling approsch, partial pre-whitening of the
streamflow datn is done by the lincar parametric model, followed by block
bootstrapping of the residuals extracted. This kind of blending was done with a view
to: (i} capture both shon- and long-lerm dependence characteristics in the observed
streamfTow data that are important for the prediction of storage and drought related
characteristics; and (if) introduce some smoothing/extrapolation value in the synthetic
simulations. Srinivas and Srinivasan (2000) repont a better preservation of the
dependence structure and the critical drought characteristics compared with finear

parametric models for annual streamflow data thar have complex dependence structure.



Nevertheless, results presented by Srinivas and Srinivasan (2000) (e.g. figures 14, 16,
1%, 20, 22 and 23) sugpesi scope for improvement in simulsting the drought
chamacteristics al various truncation levels (expressed s percent of mean annual Oow).
This is plausibly due to the complex dependence (defined in the previous paragraph)
present in the streamflow data series nol being modeled effectively by the linear
: parametric based hybrid model. We feel that such complex dependence present in the
streamflow data can be more effectively captured by better modeling of the non-
lincarities inherent in the streamflow data, which may be sccomplished by completety
data-driven models. This prompted us to go for the Artificial Meural Metwork {(ANN)
based hybrid model, which is o blend of two non-lineer data-driven models, namely,
ANN and Moving Block Bootsirap (MBB) for modeling the kind of annual streamflow

data that exhibit a complex dependence structure.

Artificial MNeoral Network (ANMN) s a deta-driven method of  computation and
information processing that tokes advantage of mimicking the processes of biological
neurons found in human brain, Over the last 2 decades, the ANMs are being
successfully applied across a wide range of problem domains, as diverse as finance,
medicine, engineering. geology, hydrology and physics (e.g. Buscema and Sacco,
2000; DeRoach, 1989; Gernoth et af,, 1993), This data-driven technigue is now widely
accepted as a potentially useful way of modeling complex non-linear and dynamiz
systems, especially in situations where the underlying physical processes are not fully
understood (Hsu et al.. 1995) or where the nature of the event being modeled may
display chaotic propertics. The emergence of ANN technology has made n mark in the
field of hydrology, wherein uncertainty rules. Some of the earliest applications of

ANMN 10 hydrology were reported by Daniel (1991), who also suggested further

1]



possible scope. The approsch has since then been used in various hydrological studies
(Hsu ct al, 1995; Dawson amd Wilby, 1998; Campolo et al, 1999; Sudheer et al,
2002; 2003; Sudheer and Jain, 2004; Jain and Srinivasulu, 2004, 10 mention a few),
For a comprehensive review of ANN applications 10 hydrology, the reader is referred
1o the reporis of ASCE Task Committee (2000a, &), Maier and Dandy (2000) and

Dawson and Wilby (2001).

It 15 cbserved that most of the previous works related 1o ANN reporfed in the
hydralogic literature have addressed river flow forecasting problems, since this data-
driven technique is very much suited for function approximation when the underiying
physics of the process is unknown. Rivera et al. (2002), has reportied the usage of ANN
for stochastic streamflow generation, althoupgh not many works addresses this
application. In their work, the hybrid model adopted for multi-site stochastic
streamflow generation using ANN is very similar to the traditional modefing approach
with the exception that the linear parametric model in the traditional modeling
approach is replaced by an ANN. The results presented in Rivera et al. (2002) indicite
that though the model offers marginal improvement over the lincar parametric model
(AR(Z)) in predicting various long-term validation statistics swch as drought and
storage characteristics, it behaves in a very similar way as the linear parametric model,
It is evident from the Fig. 9 presented in Rivera et al. (2002) that this multivariate
ANN based hybrid model is not able o capture the jumps and variations in the drought
characteristics with regard to various truncation levels (that define the streamflow
drought) in case of both the examples considered. This observation indicates that the
AMNN alone may not be able to capture the entire dependence information present in

the data, thes leaving some mlormation (including non-linearities) hidden in the



residuals. We feel that this residual informetion can be effectively modeled by
employing a nonparemetric model such as the moving block bootstrap that is expected
to capture the weak linsar as well as the nontinear dependence and any distributional
mformation retained in the residuals, This leads 1o the focus of the current research
work, namely, streamflow generation using a hybrid data-driven model. A later section
of this chapter illustrates with the help of three unreguizted snnonl streamflow records
(that exhibit complex dependence structure) that the effective blend of the two dats-
driven models referred, enables efficient stmulations of the long-term storpge and

drought-related characteristics,

22 HYBRID MODEL DEVELOPMENT

2.1.1 ANN Based Hybrid Model (ANNHM)

As discussed earlier, the basic idea behind the ANNHM model is to blend two
nonlinear data-driven models (ANN and MBB). The choice of network type and s
functioning ns well as training are discussed in this section. The algorithm for blending

the MBB with ANN is also presented.

1.2.1.1Choice of network type

The most popular ANN architecture in hydrologic modeling s the muli-layer
perceptron (MLP) trained with the back propagation (BP) algorithm (ASCE, 2000a).
Although MLP can produce accurste results, it has several drawbacks, such as a long
training time, and the BP algorithm being o gradient descent method may converge toa
local minlmum (Sudheer and Jain, 2003) resulting in & suboptimal solution to the
problem. Moreover, when the data are limited, the BP algorithm may not lead o good

generalization propertics for the network. Another popular ANN architecture, madinl

12



basiz function (REF) network can be trained in a shorter ime and has fewer parametess.
In contrast to the MLP, the EBF network has the nonlinearity embedded in the transfer
functions of its hidden-layer meurons, which makes the optimization of tunable
parameters a linear search. An RBF network can offer approximation capabilitics
similar to those of the MLF (Chen ¢t al, 1991), provided the hidden layer of the RBF
network is fixed appropriately. Some studies (e.g., Fernando and Jayawardena, 1998;

Sudheer et, al, 2002) report that RBF predicts river flows more accurately tham MLP.

2.2.1.2 RBF nerwork

The RBF networks operate quite differently from the multi-layer perceptrons (MLP)
that commeonly use sigmoid type transfer function. While the structure of the RBF is
identical to the MLP, the REF simulstes the unknown function using a network of
radial functions in the hidden layer. The nonlinearity within an RBF network can be
chosen from a few typical nonlinear functions, and the most common choice is the
Gaussian function. The choice of nonlinearity of RBF nodes is not crucinl for the
performance of the method (Powell, 1987). The hidden layer in an RBF performs a
fixed monlinear transformation with no adjustable parameters and it maps the input
space onio a new space. The outpul layer then implements a linear combination on this
new space and the only adjustable parameters are the weights of this linear combiner.
These parameters can therefore be approximated using the linear least squares method,

which i a significant advantage of using this network (Sudheer et ol , 2007,

Mathematically, in an RBF, for the pth inpul pattern X, the response (assuming

Giaussinn function) of ﬂ'u:jlh hidden node oy is-of the form

11



s f{u} di

27,
where || denotes the standard Euelidian norm; Uj is the center of the /™ radial basis

function A.); & is the spread of the RBF that is indicative of the radial distance from

the RBF center within which the function value is significantly different from zero.

The network output is given by weighted summation of the hidden node responses at
each node in the output layer. The outpul for " node on the outpul layer =, is

computed as:

£,=2ow, 22)

J=l
where wy is the weight connection between hidden and output nodes and L is the

number of radial basis functions.

1.2.1.3 Training an RBF network

Training an RBF network involves determining the radial bazis functions on the hidden
layer nodes and the output laver weights.  Determining the RBF function involves
finding suitable RBF centers and spresds. Ideally, the RBF networks require that there
be as many RBF centers as data points, which is rarely practical in most of the
apphications as the number of dota points is usually large. This also implies
unnecessarily large networks and extremely long computation times. Hence many
applications suggest optimizing the number of RBF centers that produce the output
within reasonable twlerance. Consequently, a variety of techniques have been
sugpested to optimize the number of RBF centers {e. g Moody and Darken, 1989;

Chen et al., 1991). The orthogonal least squares {OLS) algorithm proposed by Chen et

14



al. {1991) has been used in the current research. This algorithm was mplemented using

the Neural Metwork Toolbox of MATLAB.

The OLS methed involves the transtformation of the set of régressors inlo a seél of
orthogonal basis vectors. This enables the calculntion of the individual contributions to
the desired outpul from each basis vector. It works bnsed on the principle of
maximizing the explained variance of the outpul by the regressor. This is achieved by
progressively adding one new basis vector (regressor) during every cyvele of the
iteration. The algorithm is terminated when the residual error is within the chosen
tolerance fimit, This gives rise to a subset model containing sipnificant regressors less
than the number of patterns presented to the network, For a detailed deseription of

OLS algorithm, readers are referred to Chen et al. (1991).

ANNHM Algorithme
In brief, the steps involved in the ANN based Hyvhrid Model are as follows {Sudheer et
al., 2007
()  Consider v, t= 1, 2,...n be the annual streamflow serics. Scale the annual
flow series to fall within the band [0,1] using any appropriate scaling

function. The scaling function used in the current study is:

¥ _mmcyll#i‘"""lpl:’
mﬂﬁ.{jl'”jl';,---r]",} - min{}'l i ¥parem V)

Vit = (2.3)

inwhich y,,, represents the scaled annual flow series.

(i) Develop an RBF network to the scaled anmual streamflow data to extract
the dependence structure partially, adopting the procedure described earlier:

Yanr = Wh¥ ) (2.4)

15



()]

(iv)

(v)

{vi)

in which {w}represents the RBF network parameter malnx n terms of
weights (w, ), centres (Lf) and spread (o ). Herein, ¥, 18 the RBF
computed scaled annual streamfow, Herein it is 1o be noted that the idea of
ANNHM is not to capture the entire dependence structure of the flow data
series by RBF itself, but to employ REBF for parial extraction of the
dependence structure. The remaining pant of the structure {weak structure)
present in the residuals is expected to be captured by MBB. Hence a
rigourous  validation of the RBF model s not warranted. However, a
reasonable level of generalization property is expected at this stage.
Convert  J,,, into octual flow units y, by performing inverse
transformation of the scaling function used in step (i).

Compute the residuals from the historic sequence,

By = ¥~ 9, {2.5)
Obtain the simulated innovations ], ..., &, by boolstrapping &, ,, using the
moving block bootstrap (Kinsch, |989) methoed. The appropriate block size
to be used for resampling the weakly dependent residuals is to be decided.

Considering the starting value of generated flow series, ., to be the
minimum of the original annual siream flow series (ie. p, ., = 0), estimate
the subsequent RBF computed scaled generated flow (. ) using the RBF
network parameters.

e, Jun =Wy, (2.6)
Note that the starting value of 3., can be any arbitrary value, provided

sufficient *warm-up’ period is chosen to ensure the stationarity of the

generated data set.



{vii) Convert ¥un into actusl flow units ir,m by performing inverse
transformation of the scaling function wsed in step {i).

(viii) Corresponding value of the bootstrapped innovation series {e, }is then
added back tw the generated streamflow estimated by the ANN model, to

obtain the synthetic streamflows p, . Thus,

Yy = Vg * e, (2.7}

{ix) Repeat sieps 6 through % until the desired length of the symthetic
streamflow series Is reached.

ix)  Evaluate the performance of the ANNFM generated synthetic streamBow
series using verification and validation statistics proposed by Stedinger and
Taylor (1982).

(xi)  If the performance of the model is not satisfactory, then go to step (v) and
change the block size used for resampling the resideals, and repeat steps (v)
through (x).

(xii} IT the model performoance is not satisfactory even afler tryimg all the
possible alternate block sizes, then go to step (if) and tune the RBF

structure and continwe with steps (ii1) through (x).

2.1.2 Linear Parametric based Hybrid Model (LPHM) Algorithm

The details of the model formulation of LPHM, which wses the post-blackening
approach suggested by Davison and Hinkley {1997) can be found in Srinivas and
Srinivasan (2000). However, a briefl description of the algorithm Tor LPHM is
presented in the following paragraph, assuming AR(1) 1o be the underlying parametric

model (any other parametric model can b2 adopted in place).
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(i Fit & default AR(1) model to the centred historical streamflows ¥y, ...
Y, =G),  +5 (2.5}
(i}  Estimate the residuals using the autorcgressive parameter @ estimated from
the historical sequence:
£ =y, —Ep, (2.9}

(ifi) Define the residuals centred around their mean as

ey =68 (2.10)

where E, is the mean of the residuals g,

(iv) Obtain the simulated innovations F; -H-.F;, by bootstrapping £, using
the MBB (Kilnsch, 1989) method. The appropriate block size 1o be used for
resampling the weakly dependent, centred residuals is to be decided.

{¥) The bootstrapped innovation serics &£ | is then posi-blackened by
applying the estimated model to the resampled innovations, to obtain the
synthetic streamflows wy

Popy =8Py * & (2.11)
The starting value of §,_. is taken to be equal to & itself (or it can be any arbitrary

value), In this case also, the “burn-in" or “warm-up” pertod is chosen to be large enough

Lo ensure that the subsequent values of the synthetic senes are essentially stationary,

.3 EVALUATION OF THE MODELS
When a stochastic stream flow model is to be used for waler resources sysiem planning
nnd management, it is to be evalusted through & two-step process: (i} its ability 1o

reproduce the summary statistics, margmal distribution, dependence structure of the



historical Nows; (if) iz ability 1o predict the drought and the storage characteristics.
These two steps are known as ‘verification’ and “validation® of the stochastic model
(Salas ct al., 1980; Stedinger and Taylor, 1982). Accordingly in the current study, the
megns of the relevant statistics (mentioned above) have been computed over 1000
synthetic streamflow sequences generated from ANMHM and LPHM, and compared
with their historical counterparts. The variability of the statistics among the generated
sequences is evaluated by computing the dispersion/spread of the statistics obtained
from the 1000 synthetic sequences. The results of the evaluation of the two models are

discussed in detail in a subseguent scction,

Herein, we wish to emphasize thal as the synthetic series are not generated directly
from the ANN models, their separate’ evaluation is pot performed extensively. This
kind of evaluation is required only when the ANN model is directly employed for
forecasting purpose. MNevertheless, emsuring a reasonable level of generalization
performance is desirable. This is accomplished by ensuring that the refative root mean
sgunne error (RRMSE) statistic of the training and the validation sets arg in the same
order. In case of the lincar parametric based hybnd model (LPHM), it may be noted
that only o partial pre-whitening of the historical flows is done using AR(1), which is
followed by resampling of the residuals vsing moving block bootstrap technigue.
Hence, there is no need to separately cvaluate the model performance at the pre-

whitening stage.

14 CASE EXAMPLES

The proposed ANN based hybrid model has been applied to three typical unregulased

streamflow records; two data records taken from Yevjevich (1967) and the third data
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sel  obtained from USGSE  (hitpi/nwis waterduts usgs. govinwisfannual’y.  The
characteristics of the three data sets are summarized in Table 2.1. The example data
sets chosen represent different geographic regions, possess different record lengths and
varying sizes of the drainage area, magnitudes of Now and skewness of flows. The
historical streamflow time series of the three flow records. are shown in Figs, 2.1(a),
2.1{b), and 2.1(c), respectively.

Table 2.1 Annual flow data characteristics of rivers selected for the current study.

Name o Mame of State anidor  Hasin Record hean Coefficlent  Skewneis
Fives sntiom COmry arca duration discharge  of varethon
fim’) fmr's)
Lake Albert  Moemgnia Sudan RAZEGE 19 1957 71850 .30 1.723
Hoed Wahpeton M, Lisa 10381 1944-200] I 8.1 1.733 097
Meva Pefrokrepost LGSR 271954 FBAR-1935 235820 0. 1E3 0437

In the present research work, the ANN models for all the dats series are developed
using the classical procedure of splitting the dmta into training set (first 75% of the toml
data length) and validation set (remaining 25% of the totnl data length). The Gouwssian
function has been used as the radial basis function in the current study, The RRMSE
statistics are of similar order for both training and validation stutistics (02097 for
training set and 0.2029 for validation set for Lake Albert; 0.6967 for training set and
0.7023 for validation sct for Red River; 19985 for training set and 2.1325 for
volidation set for Meva River). Thus eror analysis shows reasonably pgood
generalization property for the ANN models. The parameters of the ANN models are
then frozen and used in developing the ANNHM models for the respective data series.
The chosen final network architectures {in terms of input-hidden-output nodes) of the
ANN models are 1-23-1, 1-32-1, |-42-1 for Lake Albert, Red River, and Neva River

respectively,
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While developing ANNHM (and LPHM), the block size used for resampling of
residuals extracied from the base model is varied from | 1o 15, Corresponding 1o each
biock size, one thousand replicates are penerated. As mentioned earlier, the synihetic
replicates from the ANNHM and the LPHM are evaluated based on the ahility to
reproduce the various statistics computed from historical lows such as summary
siatistics, marginal distribution, aulocorrelation structureé; and the preservation of
critical and mean droogivt charscteristics and storage characteristics. The results of the

evaluation are discussed in the following section.

1.5 RESULTS AND DISCUSSIONS

21.5.1 Example 1: Lake Alhent

2.5.1.1 Reproduoction of Summary Statistics

The results of the preservation of summary statistics of the historical streamflows by
the ANN based hybrid model (ANNHM) and the lincar parametric based hybrid model
(LPHM) for the Lake Albert for various block sizes are presented in Fig 2.2 for
catnparison. It can be observed from Fig 2.2 that both the models reproduce the mean
of the annual flow series, while there 15 some bias in reproduction of the standard
deviation al lower block sizes. A more significant observation from Fig 2.2 is that
skewness is better preserved by ANNHM a1 all block sizes compared to LPHM. This
indicates that ANNHM exhibits a tendency to capture the nonfinearities more
cffectively utilizing the potential of ANN, This inference is confirmed by the fact that
ANNHM is able to capture the skewness present in the historical llows 1o a regsonable
level, even at a block size of 1 (which is in fact an ANN model with random

resampling of residuals). On the other hand, LPHM i< able to improve the preservation
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of skewness at higher block sizes, evidently due to the blending with the nonlimear

nonparametric bootstrap method, MBE.
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Fig. 2.1. Time series plots of annual streamflows of rivers a)Lake Albent b) River Red

¢} River Meva
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1.5.1.2 Reprodoction of Marginal DMstribution

The reproduction of the marginal distribution of annual streamflows is presented in
Fig. 2.3 for the selected block sizes 12 and 7 respectively for LPHM and ANNHM.
These block sizes are selected for the respective models based on their performance in
terms of prediction of drought and storage statistics (discussed in later sections). It may
be observed that LPHM reproduces the features of the merginal distribution
reasomably, while providing some smoothing as well as extrapolation value. On the
other hand, ANNHM being a completely data-driven mode] reproduces the features of
the marginal distribution more closely, but offers less smoothing and little

extrapolation value Fig. 2.3. This limitation needs 10 be addressed in future research,

2.5.1.3 Preservation of Dependence (antocorrelation) Strocture

The preservation of the sutocorrelation structure of the historical flows by both the
hvbrid models is presented in Figures 2.4 and 2.5 respectively, for different block
sizes. It can be observed from Fig 2.4 that LPHM with block size | exhibits a similar
behavior as a linegr parametric model of arder 1. The influence of the linear parametne
model seems to be dominant an LPHM up to block size 5. However, from block size
10 {used for resampling the residusls) onwards, the hybrid effect s noticed, indicated
by the improvement in the preservation of the linear dependence structure, On the
other hand, it may be seen from Fig 2.5 that ANNHM does not preserve the linear
dependence structure at block size |, which is effectively &n ANN model with random
resampling of residuals, However, with the increase in block size used for resampling
of the residuals, ANNHM is found to improve significantly in terms of preserving the
linear dependence structure. Nonctheless, LPHM exhibits a closer preservation of the

linear dependence structure than ANNHM,
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2.5.1.4 Preservation of Drought Characteristics

In order to analyze the capability of the two hybrid models in terms of the preservation
of drought characteristics of the historical flows, the following definitions of drought
charcteristics given by Yevjevich (1967) and advocated by other researchers (Sen,
1991; Sninivas snd Srinivasan, 2000) aré adopted: A run i defined as an uninterrupted
sequence of similar events (either surplus or deficit events with regard to a predefined
truncation level), preceded and succeeded by different events. While an uninterrupted
sequence of surplus is referred to as positive run length, an tminterrupted sequence of
deficits is called negative run length, Truncation level is a level that separates the
surplus and the deficit volumes of flow with regard 10 a pre-specified percent (or
percentile) of the mean annval flow (MAF)L In the current research, the truncation
level is expressed as a percent of the mean annual flow (MAF).

Figure 2.6 provides the schematic of the basic definitions of the droaght
chamcieristics. Maximum run length (MARL] is taken to be the greatest negative run
length in a given streamflow sequence, for a pre-specified truncation level. Maximum
run sum (MARS) is defined as the larpest volume deficit (negative rum sum)
encountered in a given streamflow sequence, for a pre-specified truncation Jevel. Mean
rum length (MERL) is computed as the mean of all the negative run lengths identified
in a given streamflow sequence, for o pre-specified truncation level, Mean run sum
{(MERS] 15 expressed as the mean of deficit volumes (négative run sums) computed
from all drought occumences, in & given streamflow sequence, for a pre-specified
truncation level. The maximum run length and the maximem run sum are referred to as
critical drought chamacteristics in terms of duration and volume respectively.

In this stedy, the truncation levels have been fixed ot 50% MAF to 100% MAF at an

incremental level of 5% MAF. Analvzing the run characteristics of the historic
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sireamflows at close intervals of truncation level, provides information regarding the
variations {including jumps) in the run characteristics with regard @ variations in the
truncation level (Srinivas and Srinivasan, 2000). Ideally, a good stochastic stream flow
model for use in drought planning and management 15 expected to preserve the critical
and the mean drought characteristics defined above ot all truncation levels specified.
The average of the critical and the mean run characteristics coresponding to different
truncation levels, computed over thousand replicates obtained from ANNHM and
LPHM are presented in Figures 2.7-2.10, along with their historical counterpans for
Lake Albert.

It is observed from Fig 2.7 that with regard to the truncation levels, there are two
distinet jumps in the historical MARL values. The LPHM fails fo capture these jumps
of the eritical drought duration (MARL) even upto a bleck size of 10. With further
increase in block size, some improvement in prediction is noted, However, the critical
drought duration at intermediate truncation levels (70% and 75% MAF) are
overcstimated, Whereas, ANNHM is able to capture these jumps to some ¢xtenl, even
ot & block size of | {albeit significant bias), even though the linear dependence
structure is not af all preserved by ANNHM st block size 1 {Fig 2.5}, It can be szen
that the preservation of MARL improves with further increase in block size and resulis
in a good prediction at block size 7 for ANMHM (Fig 2.7). This demonstraies more
effective blending of the two nonlinear models ANN and MBR, when compared with

LEHM (which is a blend of linear parametric mode! and MBB),
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where x is the truncation level (% mean annual fow);
dl; is the length of i™ run; gy Is flow for year ‘v'; 1 is time

Fig 2.6. Basic definitions of drought characteristics
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The mean run length (MERL) computed from both the models is presenied in Fig 2.8,
which indicates that LPHM is not able to model the variations of the mean drought
durations with increasing truncation levels. This can be plausibly attributed to the
dominance of linear parametric effect in the LPHM. On the contrary, ANNHM is able
lo reasonably model the variations in mean run length with truncation levels from
block size 5 onwards (Fig 2.8). Apain, this can be attributed to the effective blending

of the two nonlinear models.

It is evident from Fig 2.9 (which presents the maximum run sum (MARS) of the
historical streamflows), that both LPHM and ANNHM preserve the maximum run sum
reasonably well from block size 7 onwards. Figure 2. 10 depicts the preservation of the
mezn run sum (MERS) statistic by both the hybrid models. The inferior performance
of LPFHM is clearly seen at all truncation levels up to a block size of 5. Even at higher
block sizes, the performance of LPHM is not sstisfactory ot & number of truncation
levels, While, ANNHM is able 1o caplure the variation of mean run sum statistic ot
block size 5, and shows further improvement in performance st block size 7. However,

it is 1o be noted that a1 higher block sizes (preater than 10), ANNHM does not preserye

thie mean run sum statistie.

With a view to compare and appreciate the spread of the critical and the mean drought
statistics obtained from both the hybeid models, box plots of MARL, MERL, MARS
and MERS are presented in Fig 2.11. The inter-quartile range is represented by the
box. The limits of the upper and the lower arms indicate the 95 percentile and the 5

percentile points respectively. For the comparison, the block sizes selected for LPHM
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and AWNNHM are 12 and 7 respectively. This selection of block size was done

considering the tmdeoff between the bigs and the spread of the above statistics.

It is seen from Fig 2.11 that LPFHM overestimates MARL at a few of the lower and the
imtermediate truncation levels, while it predicts the same well at higher trancation

levels. Whereas, in case of ANNHM, the spread of MARL is limited at two of the
imtermediate truncation levels. Although the maximum run sum (MARS) has been
preserved well by both the models, LPHM shows a better prediction at higher
truncation levels, With regard 1o the prediction of the mean drought characteristics
(MERL and MERS), ANNHM outperforms LPHM. A significant chservation from
Fig. 2.11 is that the zero values of all the historical drought statistics a1 50% and 55%
rruncation levels are reproduced by ANNHM, while the same arg averestimated by
LPHM. Also, the jump in the historical drought statistics from 55% 10-60% truncation
level is better captured by ANNHM. From the above, it may be inferred that ANNHM

i5 able to capture the nonlinearities inherent in data better than LPHM.

2.5.1.5 Prediction of Reservoir Storage Capacity

The simulations from the two hybrid models are further validated by testing their
ahility to predict reservoir storage capacity. The reservoir storage capacities required to
cater to yields of 50% Mean Annual Flow (MAF) 1o 20% MAF (a1 5% MAF
intervals), are computed using the sequent peak algorithm (Loucks et al., 1981, p.235)
The resuits are presented in Table 2.2 and Fig 2.12. It is to be nofed that the relative
bins in predicting the storage statistics at lower demund levels is high in case of LPHM

(Fig. 2.12) Moreover, the relative RMSE of storage capacity prediction is



phenomenally higher in case of LPHM compared (o ANNHM (Table 2.2) because of
the farger
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Fig. 2.12. Prediction of reservoir storage capacity - A comparison between Linear
Parametric Hybrid Model (LPFHM: L=12) and ANN Hybrid Model (ANNHM). River:
Lake Albert. The civcle denotes the historical valwe and the darkened square indicates

average value of the sratistie over 1000 replicares.
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dispersion {Fig 2.12). It may also be noted from Fig 2.12 that the performance of
ANMHM improves as the block size increases to 7. However, with further increase in
block size, the spread of the storage statistic gets reduced, which is not desirable for
design decision making.

Table 2.2 Comparison of predicted storage characteristics by LPHM and ANNHM for
selected block sizes. River: Lake Albert.

Derrand (%% 60 &5 70 75 BO A5 20
MAF)
LPHM, L'=12 0583 | 40231 | 0213 | D181 -0.103 -0.0B5 | -D.194
Relative Bigs
ANNHM, L=T 0357 | 0288 0182 | D14T 0.1368 0.0Bs | -0.110
s LPHM, L=12 2493 | 1.408 1,126 | 0968 a.Bov 0778 | 0915
Refalive AMSE
- ANNHM, L=T 0.516 | 0467 0.384 | 0384 0415 0454 | 0.715

L indicates the block size; MAF indicate mean annual flow

2.5.2 EXAMPLES 2 & 3: Red River (USA) and River Neva (USSR)

The mean and the standard deviation of the historical flows are well preserved by both
the models for both Red River and River Neva, which are not presented herein for
brevity. The ANNHM reproduces the skewness of the Red River flows (0,973, see
Table 2.1) even at a block size of | (mean skewness over |000 synthetic sequences =
(1,924}, while LPHM exhibits considerable bias (mean skewness over 1000 synthetic
sequences-= (L808). Although the performance of LPHM improves as the block size
increases (0.855 at L=6 and 0,869 at L=10), the model is not able to capture the
skewness entirely, The better performance of ANNHM in preserving the skewness
indicates that it has & wendency 1o capture the nonlinearities more effectively utilizing
the potential of ANMN, which confirms the earlier observations in the case of Lake
Albert. In the case of River Neva, the historic flow series exhibits a low skewness of
(L4318 (see Table 2.1) and hence ANNHM is able w0 show only a marginal

improvement in reproducg the skewness, It is to be mentioned that with regard to
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the preservation of lincar dependence, both models exhibit a similar behaviour as in

the case of Lake Albert flows, and hence the same are not presented herein for brevity,

L5231 Preservation of Droaght Characterisiics

The performances of ANNHM and LPHM in terms of their potential to preserve the
drought characteristics when applied to the streamflow series of Red River and Neva
River are presented in Tables 2.3 and 2.4 respectively. It is observed from Table 2.3
that in the case of Red River both the models underestimate the MARL at higher
truncations (85-100%% MAF). This is mainly because both the models are not able to
simulate the jump in historical MARL (4 to 8 years) from 80% to 85% MAF. In the
case of River Neva (see Table 2.4), the MARL mt higher truncations (95%. 100%
MAF) are significantly over estimated by LPHM. The preservation of MERL Is seen to
be better for ANNHM at lower truncation kevels (50-60% MAF) in the case of Red
River (Table 2.3} On the other hand, in the case of Meva River streamflows there 15 no

significant difference (Table 2.4) berween the two models in simulating MERL.

It is observed from Table 2.3 that in the case of Red River the MARS is overestimated
by LFHM at lower truncation levels, while ANNHM underestimates the same at higher
truncations. It may be noted that the standard devinstion of the predicted MARS (over
the replicates) is higher for LPHM when compared with ANNHM. In the case of Neva
River (Table 2.4) it is observed that ANMHM performs well at higher truncation levels
while it underestimates the MARS at intermediate truncation levels (75%, B0% MAF).
On the contrary, LPHM is found 1o overestimate MARS at both imtermediate and

higher truncation levels in addition to high dispersion over the replicates. The
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preservation of MERS is found to be better for ANNHM compared to LPHM in the

caze of both the rivers.

Tabte 2.3 Preservation of historical drought characteristics - Red River (valoes in the
parenthesis denote the standard deviation over 1000 replicates, T1. denotes truncation

level (%))

TL s 535 60

Mecimenn Rum Length (vears)
Historical 200 200 4.00
LPHM 234 278 3.4l

7 08 (12
ANMNHM 202 230 1.355

(0.5) (0.6) (L)

Myean Run Length {vears)
Historical 125 131 1.54
LPHM 135 146 162
(0.2) {(02) {0.3)
ANMNHM 124 129 153
032) (0.2) (03)

Maximum Run Sum (in 10 ne)
Histodesl 231 28E 345
LPHM 271 336 437
(114)y (1ZB) (153)
AMNMHM 197 250 348
(62) (76} (90)

Mean Run Sum (in 10" m’)
Historical 95 87 127
LPHM 103 110 (148
(34) (30) (37)
ANMHM 90 9] 24
23) (22) (26)

65

4.00
.72

(L1
371

(L1)

1.62
1M
(0.3)
1,71
(0.3)

446
529
(174)
445

(113)

173
191
43)
172
(31)

70

4.00
393

(L1}
383

(1.1}

.85
1.83
(0.3)
1.79
(0.3)

559
628
{(199)
546
(141

221
234
(4%)
221
(37)

73

400
402
(1.1}
3.598
(1.0)

.85
.85
0.3)
.84
0.3)

673
736
(227}
849
(170

274
284
(56)
272
(44)

80

4.00
4.72
(12)
4.44
(1.1)

2.08
2.11
(4}
2.01
(0.3)

786
900
{263)
791
(204)

354
365
(78)
M
(39)

45

8.00)
6.97
(2.9)
651

(2.3)

264
268
(0.6)
2.63
(0.8)

1366
1327
{553}
1134
(410)

436
452
(126)
466
(98)

H

8.00
7.66
(3.0)
7.58
(2.7)

310
1.00
(0.7)
3.03
(0.8}

1593
1605
(643}
1448
(519

386
611
(157}
592
{149)

95

8.00
7.86
{3.0)
7.63
2.7}

320
3.14
(0.7}
3.13
(0.8)

1820
1839
(722)
1662
(593)

676
T04
(182)
678
(171

(W)

8.00
799
(3.0)
7.63
2.7

320
3.20
(0.8)
3113
(0.8)

2047
2078
(813}
1875
(670}

T67

(203)
167
(192)



Table 2.4 Preservation of historical drought cheracteristics — Neva River (values in the
parenthesis denote the standard deviation over 1000 replicates, TL denotes trumcation

level (%))
TL 50 55 80 G5 70 73 50 B3 90 05
Moo Run Length (rears)

Mistorical 0 © 0 0 0 200 200 300 400 4.00
LPHM 0 0 O 003 031 178 335 306 375 $52

02) (@6 (06 @O 0% (1 (D
ANNHM 0 ¢ © 0 0 165 207 279 336 4.63

(06} (04) (D6) (0.7) (1.1}

Mean Run Length (Years)
Historical © 0 0 0 0 150 L57 156 220 2.73
LPHM ¢ 0 0 003 030 140 154 166 201 2.64
(02) (06) (04 (©02) (@©3) (0.3} (0.5)
ANNHM © 0 0 0 0 136 148 158 194 2.52
(04)  (02) (02 (02 04

Mazimmm Run Sum (in 10° or')

Mistorical @ 0 0 0 0 2686 10848 19985 32228 44471
LPHM 0 0 0 31 532 472 12510 233%  ITI97 5750

{244) (1371) (3354) (5343) (8364) (12508) (1B848)
AMNMNHM ] 1] o i ] 15289 B730 18027 2Uh? #4903

(554) (2268) (4019 (67TR6) (10107)

Mean Run Sum (in Ilia m"}
Historical @ B0 0 1] 2157 4133 B745 15425 23561
LPHM Ll | R L8] 5N M0 S07T3F 0 10256 16408 25417
(244) (1324) (1589 (1589) (2444) (3532)  (5286)
ANMHM 0 0 0 0 ] 1224 4084 B79% 14561 23002
(418) (1122) (I804) (2378) {(30939)

1.5.2.2 Prediction of Reservoir Storage Capacity
It can be seen from Table 2.5 (Red River) that the LPHM consistently overestimates
the storage capacity for all demand levels (60% to 90% MAF) in addition to a high

degrees of dispersion resulting in high values of relative EMSE. On the contrary, the
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Hoo

6.00
6.82
(LT)
6.19
(1.3)

3.08
317
(0.6)
1.06
(0.5)

65677

R5544
(24950)

70691

(15242)

32763
34939
(7891}
33065
{6376)



ANNHM yields a good prediction of the storage capacity for demand levels 60% 1o
80% MAF. However, for higher demand [evels (83% and 90%% MAF) considerable
gverestimation is seen resulting in high relative RMSE. In the case of River Neva
{Table 2.6), it may be noted that the performance of ANNHM is better than LPHM at
demand levels of 85% and 90% MAF, However, both the models do not seem 1o

perform well at a lower demand level of 75% MAF.

Table 2.5 Comparison of predicted storage characteristics by LIPHM and ANNHM for
selected block sizes; Red River

Demand (% MAF) 80 65 70 75 B0 85 ag
. LPHM, L =8 0383 | 0297 | 0218|0213 -02324 | -0.588 | -0.4B1
FAelative Bias
ANNHM. =8 1.0586 | 0022 0.008 | ko2 =124 | <0381 a0 530
Relative LPHM, L= & 0629 | 0593 | o541 ose2| o743 1082 | 1027
RMSE ANNHM, L= & 0289 | 0308 | 0331 0380 0511 0.801 | D.B41

L indicates the block size, MAF indicate mean annual flow
Negative and positive values of relative bias indicate overestimation and
underestimation of the historical storage capacity respectively.

Table 2.6 Comparison of predicted storape characteristics by LPHM and ANNHM for
selected block sizes, River: Neva

e

Demand (% MAF) o 55" 70" 75 80 85 ag
5 LPHM, L =13 - . . 0687 | 0171 | -0ot8e | -D.3BA
BT ANNHM, L=13 . . , 0431 | 0188 | 0084 | -0.010
Fielative LPHM, L=13 . - 3 1415 | 0537 | 0477 | 0618
RMSE [ ANNHM, L=13 | - - 3 0477 | 0280 | 0222| D248

L indicates the block sizc; ; MAF indicate mean annual flow; * At the demand
levels of 60%6, 65% and 70% MAF, the storage capacity computed from historical
Mows is zero, hence the values in these columns can not be computed.
Megative and positive values of nelative bias indicate overestimation and
underestimation of the historical storage capacity respectively.
26 SUMMARY AND CONCLUSIONS
A hybrid model that blends the two non-linear data-driven models, ANN
{deterministic’) and MBB {stochastic) is proposed for modeling annual streamflows of

rivers that exhibit complex dependence, First, a nonlinear deterministic model, ANN
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{radial basis function network) is fitted o the historical annual streamflows, which
captures the nenlinear trend in the data effectively. Then, the resulting residuals from
the ANMN model are resgmpled using a8 non-parmmetric resampling technique, moving
block booistrap with a view to capture the weak linear as well as the nonlinear
dependence and any distributional information retdined in the residunls, The proposed
model has been applied 1o three annual sireamflow data sets that exhibit complex
dependence, drawn from different geographic regions with varying record lengths. The

effective blending of the two data-driven models is shown to resuli in efficient

simulations of the long-term storage and drought-related characteristics,

Skewness present in the streamflows is befter preserved by the proposed ANN based
hybrid model (ANNHM) compared to the linear parametric based hybrid model
{LPHM) plausibly owmg to the effective capturing of the nonlinesrities. The ANNHM
being o completely data-driven model, reproduces the features of the marginal
distribution more clozely compared 10 LPHM, but offers less smoothing and [ittle
extrapalation value. However, the lincar dependence structure is better reproduced by

LPHM than ANNHM.

Deespite a better preservation of the linear dependence structure, LPFHM 5 not able to
effectively predict the variation of critical drought duration (including jumps) with
respect o truncation kevel, On the contrary, ANMHM iz able to model the variation of
critical drought duration better, even though the preservation of lhinear dependence
structure is inferior 10 LPHM. This is plausibly due to the effective blending of the two
nonlinesr models. Also, the mean drought characteristics are more efficiently modeled

by ANNHM.
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The relative biss in predicting the ressrvoir storage statistics at lower demand levels is
found to be high in case of LPHM. Moreover, a large spread of the same is observed at

all demand levels, thus increasing the mrelative RMSE significantly compared with
ANNHM,

Future research should address the extension of the proposed ANM-based hybrid
model 1o single-site and multi-site modeling of periodic stream flows.



CHAPTER 3

PERIODIC STOCHASTIC STREAMFLOW MODELS

3.1 INTRODUCTION

Seasonality of sireamflow data adds a degree of complexity to the selection of an
appropriate stochastic model to fit the data. It may be necessary 1o use a parametric
model that has seasonally varving propertics. If the seasonality of the flow dats under
consideration appears (o be only in the mean and the varance, then such seasonality can
be removed by simple seasonal standardization, and a stationary model can be fitted 10
the deseasonalized dats. However, if the autocorrelution structure of the observed data
exhibits significant periodicity, then seasonal models that explicitly incorporate a
periodic dependence structure must be used (Rasmussen et al., 1996). Varying degree of
nenlinearity in the different periods/seasons, generation of streamflows owing to mixed
precipitation mechanisms, add to the complexity forther. Such characteristics of the

genphysical time serics make the modeling of multi-season streamflows o challenging

task,

An ideal single site multi-season synthetic flow generation model should aim to
reproduce: the summary statistics (mean, standard deviation and skewness) and marginal
distribution of observed flows al penodic and annual time scales; autocommelation
structure of flows at aggregated annual level; within-year and cross-year serial
correlations; month-to-year cross-correlations; and non-lincanty stationanity i the
underlying dependence structure, In addition, it should provide sufficient variety in the

stochastic simulations with a reasonable degree of smoothing and exirapolation.



3.2 LITERATURE REVIEW

32.1 Parametric Models

In operational hydrology, quite ofien synthetic seasonal streamflow sequences are
generated using one of the following two approaches: (i) a direct approach using a seasonal
model (whose parameters may change from season o sesson); (i) disaggregation approach
in which annual streamflows are generated first using a simple linear parametric model and
the same are disaggregated into seasonal flows subsequently. Typical examples for the
former approach mclude Hipel et al. (1977), Hirsch (1979), Salas ¢t al. (1982), Vecchia ¢t
al. (1983}, Haltiner and Salas (1988), The seasonal models are often used i modeling
sireamflows at a single site and are quite simple in siructure and sre parsimonions.
However, these models may not preserve the dependence structure of histonical streamiflow
sequences over pericds of several months 10 one or more years and hence may not be

preferable for long-term reservoir operation studies ( Stedinger and Taylor, 1982).

In addition to the gencral drawbacks of AR/ARMA models (mentioned in the carlier
subsection), a few more drawbacks/limitations surface in the context of periodic modeling
of stream flows:

In certain cases, a different normalizing transformation may have to be applied for each
period, for effective reduction of skewness close to zero and this may distort the comrelation
structure in the synthetic simulations upon inverse transformation to real space, [f the
streamflow data size is limited, then, a single ransformation may have to be applied for all
periods, which may not reduce the skewness (o zero in all periods. This will result in

medeling inaccuracies, as normality condition will not be satisfied for all periods. During



low flow perieds, the standard deviation of flows may be equal or higher in magmtude than
the mean of flows, This necessitates using certivin transformations that have a lower bound,
in order to aveid generation of negative flows. This may distort the marginal distribution of
flows in such periods. Moreover, if each period apparently follows a difTerent order model,
then, the model may not be able to provide a good fit to the data, since exact statistical tests
for idemification as well as diagnostic checking of residuals, do not seem (o exist for such
cases. In case of periodic ARMA models, it becomes even complex, compared with
peniodic AR models. Additional complexities may anse due to stationarity conditions 1o be

satisfied by the periodic AR parameters,

In the disaggregation approach, 1o start with, annual flows are gencrated using an
appropriate annual streamflow model, and then the same are divided among the sezcons
(periods) within the year. These models describe the distributions of streamflows both at
the aggrepated (annual) and the disaggregated {seasonal) levels, Such dissgprepation ean
proceed further down in the time scale up to even hourly flows, in stages. The proneering
work in this direction was that of Valencia and Schaake (1973) though Harms and Campbell
{1967) predates it. The structure of the Valencia md Schaske (VS) model is designed 10
preserve the variance and covanance between the annual and the scasonal flows and to
preserve the vanance and covariance among the within-year Qows (Salas of al., 1980). A
major drewback of the V& model 15 that it fails 10 reproduce the cross-year senal
correlations, In addition, the number of parameters to be estimated is quite large. Mejia and
Rousselle (MR) (1976) extended the VS model by introducing an additional term with a

view to preserve the comrelations between the seasonal flows in the current year to those of

47



the previous vear(s). In spite of increasing the model complexity through additional
parameters, the MR model could not perform the intended function in all cases (Lane, 1982,
Stedinger and Vogel, 1984). Dnven by the concern of the complexity due to the large
number of paraometers required by the VS and the MR models, Lane (1979) developed a
condensed disaggregation model. Even though the LAST computer package (Lane, 1979,
Lune and Frever, 1990) incorporates staging snd the use of condensed models (thus
sipnificantly reducing the number of parameters), there are two mjor drawbacks: (i) it does
nit explicitly model the high-lag month-te-month serfal correlations and (i) 1t makes litle
effort o keep the sum of seasonal flows close 1o the specified annual total. Grygier and
Stedinger ([Y88) mention that in case of Lane (1979)'s model, large adjustments are often
required to make the generated flows at the seasonal level, add up to the specified annual

valoe, resulting in distortion of the distribution of the gencmited flows,

The condensed disaggregation models (Lane (1979, 1982); Stedinger and Pei, 1982;
Stedinger et al,, 1985; Grygier and Stedinger, 198%) attempt to reproduce only a selected
subsel of the correlation statistics with & view to reduce the number of parameters
required and hence the model size. The condensed temporal disaggregation model of
Stedinger et al. (1985) reproduces explicitly only the correlations between monthly flows
and annual flows, and between consecutive monthly flows. The SPIGOT (Grygier and
Stedinger, 1990} stochastic streamflow package uses univariate and multivariate
generalizations of the temporal disaggregation model developed in Stedinger et al.
(1983). Furhermore, empirical adjustment procedures suggested by Grygier and

Stedinger (1988) have been incorporated into SPIGOT, in order 1o restore summability of
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the disaggregate Nows to the aggregate flows, in the event of normalizing transformations
being used. Santos and Salas (1992) have presented a stepwise disaggregation scheme
that would preserve means, vandnces and a specified covariance structure, also
maintaining the additivity property. However, this scheme is known to be limited 1o

reproducing these properties only in the normalized flow domain.

In the last decade, further advancements have been made in the parametnic modeling
front by Koutsoyiannis (1992; 1999; 2000) and Koutsoyianms and Manetas (1996).
Kouisoyiannis (1992) developed a parsimonioos nonlinear multi-variate dynamic
disaggregation model (DDM) that follows a stepwise approach for simulation of
hydrologic series.  This involved two parts (i) a linear step-by-step moments
determination and (11) an independent non-linear partittoning. This model was shown to
treal the skewness of the lower level vanables explicitly, without loss of additive
property. Koutsoyiannis and Manetas (1996) proposed another simpler multivariate
disaggregation method, that retained the parsimony in model parameters for lower level
varinbles as in DDM (Koutsoyiannis, 1992), and implemented accurate adjusting
procedures to allocate the error in the additive property, followed by repetitive sampling
to improve the approximations of the statistics that are not explicitly preserved by the
adjustment procedures. More recently, a peneralized mathematical framework for
stochastic simulation and forecasting problems in hydrology has been proposed by
Foutsoyiannis (2000). A generalized astocovanance function is introduced and is
implemented in a generalized moving average generating scheme that yields a new time-

symmetric (backward-forward) representation. A notable highlight of this model
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framework 5 that unlike in the traditional $tochastic models, the number of model
parameters, the type of generation scheme and the type of autocovariance function can be
decided separately by the modeler, This framework is shown to be appropriate for
stochastic processes with either short-term or long-term memory, Koutsoyiannis (2001 )
also proposed a methodology for coupling stochastic models of hydrologic processes

applying to different time scales.

3.2.2 Nonparnmetric Models

MNonparameine procedures offer significant advantages over their parametnc
counterparts. Nonparametric procedures generally reproduce the empirical structure of
multivariate data sets, yet, they do not require assumptions about data or model structure,
or complexities associated with parameter estimation. As a resull, simple data
resampling schemes such as the bootstrap and jackknife have pained acceptance by
hydrologists as conccptually simple (yet computationally intensive) altematives to more
complex parametric alternatives. Helsel and Hirsch {1992) and Lall (1993) provide a
comprehensive review on applications of nonparametric techniques to n wide class of

water and environmental applications.

While parametric methods of time series modeling require assumplions regarding the
marginal probability distnbutions and the correlation structure of the variables of interest,
nonparametric methods are, in general, data-driven and simply retain the empirical
structure of the observed variables. Parametric methods require estimates of a number of

model paramcters, which the nonpammetric methods can cither minimize or avoid



altogether, depending on the method adopted (Vogel and Shalleross, 1996). Moreover,
parnmetric uncertainty is considered implicitly in the nonparametric approach, since a
broad class of models is approximated. It is to be noted that a parametric probability
density function is one that is folly defined by a finite set of parameters, while a
nonparametric probability density estimate is based on the entire sample (rather than a
few sample moments). In case of the conventional linear parametric models, the data
near the modes of the marginal distnbution of observed streamflows dominate the model
fit, and the tails can be viewed as extrapolation of that behavior. In the process, the
parametric models generate synthetic streamilows beyond the extrema and m between the
observed streamflows (including in between large discontinuities (il any)), inflicting
considerable smoothing to the histogram of observed streamflows. It is 1o be mentioned
that in certain cases, 1l may be rather unwise to over-smooth the wide discontinuities seen
in the histogram of observed flow trace, since it may lead to some amount of
misrepresentation of the real hydrologic behavior. In contrast, synthetic replicales {from
simple bootstrapping techniques, such s MBB, mimic the multimodality, peakedness
and asymmetry seen in the marginal distribution of observed flows, However, this kind
of bootstrapping fails (o generale fMlow values other than those seen in the historical low
trace. In other words, it has a tendency 1o parse the data (no smoothing effect is seen) and
thus defeats the purpose of synthetic streamflow simulation. Hence, there is need for a
model that is not only good al reproducing the salient features of the marginal distribution
of observed streamflows, but also flexible enough to provide reasonable degree of
smoothing and extrapolation in the tails. A nonparametric density estimator is consistent,

whereas 8 mis-specified parametric PDF has a bias that does not reduce with increasing
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sample size (Sharma et al, 1998). Silverman (1986) and Scott (1992) provide
introductory material on nonparametric methods. The increasing awareness of the need
to model nonlinearity and nonstationarity {such as jumps and periodicities) in the
underlymng dynamics of geophysical processes coupled with the availability of reasonable
length of historical records and fast and inexpensive computing facilities has spurred the
use of nonparametric methods in several areas of hydrology, i recent times (Lall, 1995;

Lall and Sharma, 1996; Lall et al., 1996).

A variety of non-parametric “smoothers” are available in the statistical literature. They
differ in their estimation efficiency, in their computational demands, in their applicability,
and in their mathematical form. However, they share the goal of approximating (with
asymptotically vanishing error) an arbitrary, unknown function of the data, and the notion
that each estimate be local (Le., influenced only by a nearby data). Smoothers are
interpretable as weighted moving averages (kemnel estimators) of some function of the
dota.  Localization is achiecved by weights that vanish with distance from the point of

estimale,

For trend analysis and investigating bivariate dependence, locally weighted estimation
or LOESS has emerged as the nonparametric method of choice. Helsel and Hirsch
(1992} and Hirsch et al. (1991;1993) formalize procedures for using LOESS for trend
analysis of hydrologic and environmental data, and o remove systematic variations in the
environmental variable of interest.  Sangoyomi and Lall {1993) used kernel d:l:l.!litj'

estimate (k.d.e.) to investigate the number of modes in the p.d.f of several hydroclimate



time series in the Great Salt Lake basin, with the aim 1o identify distinet regimes in long
term climate, and thereby improve the predictability of the Great Salt Lake volume
varigtions. Lall and Bosworth (1993) have developed a multivarate kemel density
eslimator that employs a set portitioning strategy to define local bandwidth matrices
proportional to subset covanance, and explore multivariate dependence between
precipitation, evaporation, nel precipitation and annual inflow into the Great Salt Lake.
An interesting interplay between precipitation and evaporation in generating inflows is
seen. Secrial dependence issues are not properly dealt with. The sensitivity of k.d.e to

bandwidth variation is examined, bul optimal bandwidih selection is not attempied.

Tong {1990} provides motivation for nonlinear time series analysis methodology and
for nonparametric modelling and visualization of time series. He uses a daily nver flow
example to illustrate that such data with sudden jumps, time irreversibility, asymmetric
Jjoint distributions, persistence, lots of high level crossings, and state dependent
correlation between lagged flows do not support the assumptions inherent in classical

linear ARMA modelling.

Yakowitz (1987, 1993), Yakowitz and Karlsson (1987), Karlsson and Yakowitz
{1987a, 1987b) motivate and provide theoretical basis of nearest neighbour (NN)
regression for prediction of time senes and specifically for rainfall-runoff’ modelling.
Cialeati (1990) shows that this simple NN predictor provides lower mean inflow to an
ltalisn reservoir relative to an autoregressive model with exogenous inputs that was

coupled 1o physically based, calibrated, rainfall-runoff and snow cover evolution models.
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Smith (1991) and Smith et al. (1992) present some interesting applications of Yakowitz"s
idess that expose the fMexibility of nonparametric methods for seeking relationships
between arbitrary functions of possibly linked data sets. Kember ei al. (1993) connect the
NN predicior 10 state space reconsiruction methods uosed to reconstruct nonlinear

dynamics (Farmer and Sidorowich, 1987) from time series.

Lall et al. (1994) use Multivariate Adaptive Regression Splines due to Friedman
(1991}, to recover the map of the dynamical system, based on the time series of biweekly
volume of the Great Sall Lake. Paramefers including model order, delay, and spline
parameters are chosen using generalized cross validation (GCV). Blind predictions up to
4 years shead using only prior data are seen to be dramatically superior as the forecast
horizon increases, compared 1o those from the best fit autoregressive (AR) model. In
fact, the unprecedented, and dramatic 4-year rise and fall of the Great Salt Lake in the
1980°s, could be predicted.

Rajagopalan et al, (1993, 1994) and Lall et al. (1993) develop a seasonal nonpammetnic
renewal model (NPR) for simulating daily precipitation, where successive dry and wet
spell lengths may be dependent or independent. All requisite probability density
functions are estimated by kernel methods. Monte-Carlo results with real data show that
spell characteristics as well as other statistics are well reproduced. Tarboton et al. (1993)
have developed o multivarite kemel density estimate {k.d.e) with local bandwidihs
proportional to local covariance based on k nearest neighbours (similar in spirit to Lall

and Bosworth (1993)). as well as requisite conditional k.de's for simulation of
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streamf{low time series. Tarboton (1994) evaluates the performance of the Colorado niver
annual streamflows simulated by SPIGOT (Grygier and Stedinger, 1990) through visual

inspection of plots of k.d.e.'s of marginal p.d . of recorded and simulated traces.

The bootstrap is & simple non-parametric technigue for simulating the probabality
distribution of a statistic or a specific feature of the distnbution. The key idea 15 to
resample from the original dats, either directly or through a fitted model o creale
replicate data sets, from which the empinical probability distribution of the statistic of
interest can be found (Davison and Hinkley, 19%7). It is a good example of 2 new class
of nonparametric statistical methods that substitute computer intensive computations for
complex mathematical (parametric) models. Indeed, the bootstrap offers the potential for
highly accurate inferencing and can eliminate the need to assume or impose a convenient
model that does not have a strong scientific basis. At the same time, the basic idea
maotivating the bootstrap approach is conceptually simple. Resampling methods are
applicable quite generally, and their implementation is usually sutomatic (Leger et al,
1992), However, while dealing with dependent data, it is a challenge to resample the
records in such a way 10 ensure the preservation of the temporal and the spatial
covariance structure of the original time serics, With the advent of powerful computers,
booistrap resampling methods are emerging as potential iechniques in modern statistical
analysis for formulating inferentinl procedures such as constructing confidence regions,
finding standard errors of estimates, carrying out tests of hypothesis, In addition, there is
hope that the bootstrap can address complicated issues that arise in model selection. The

use of bootstrap methods in time series analysis 15 receiving considerable attention in

3



modern statistics, as decumented by Lepage and Billard (1992), Efron and Tibshirand

(1993}, Hjorth {1994), and Davison and Hinkley{1997).

The classical bootsirap II:‘S-E!.I'I';.F“IIE scheme was introduced by Efon (1979). This
technique prescribes a data resampling strategy using the random mechanism that
generated the data.  In other words, it resamples with replacement from the empirical
distribution function of independent ‘and identically distributed (i.id.) data. [s
applications for estimating confidence intervals and parameter uncertainty are well
known (Tasker, 1987; Hardle and Bowman, 1988; Zucchini and Adamson, 1989), The
procedure of synthetic streamflow generation addressed by Maass et al. (1967) is
analogous 1o the classical bootstrap approach. Rondom resampling methods have been
used in hydrology for comparing statistical methods, estimating parameter uncertainty,
and companng network design techmiques. A few such works are those of Tasker (1987),
Zucchini and Adamson (1988 1989), Woo (1989) and Moss and Tasker (1991). When
the random varables are ii.d., this procedure provides very good approximation (o the
distribution of many commonly used statistics. However, for dependent random

variables, the Efron's bootstrap fails (Lahiri, 1995).

To model dependent time series data, there are two popular bootstrapping approaches,
One is known ns the Model Based Resampling (MBR) approach and the other is the
Moving Block Bootstrap (MBB) approach. Model based resampling for time scries has
been discussed by Freedman (1984), Freedman and Peters (1984) and Efton and

Tibshirani (1986; 1993), Bose (1988), among others. In this method, o start with, &

mode] structure is assumed, ils parameters and residuals are estimated, Then, the
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estimated model residuals are recentred around their mean and are resampled with
replacement considering them as independent and identically distributed (i.0.d). Finally,
these bootstrapped residuals are used 1o synthesize a time series. It is simple o apply and
leads w good theoretical behavior, provided the fitted medel s comrect, The mugor
drawhback with this resampling scheme is that, in practice, the model structure is (o be
correctly identified and its parameters are 1o be sccurately estimated from the data, IF the
chosen structure is incorrect, the generated series will be from a wrong model, and hence
they will not have the same statistical propertics as that of the original data (Davison and
Hinkley, 1997).

The other popular approach to resampling in the time domain, known as the Block
Bootstrap scheme, resamples blocks of consecutive observations. According to this, the
data (of srze N) is divided into b non-overlapping blocks, cach of length L. Then, the
synthetic replicates are constructed by resampling the blocks at random, with
replacement. In this method, the onginal dependence structure is maintained within the
blocks, but i5 destroyed al boundaries between blocks, This was developed by Hall
(1985) and Carlstein (1986). Subsequently, Kiinsch (1989) and Liu and Singh (1992)
independently proposed the Moving Block Bootstrap (MBB) approach for time series
analysis, In this method, the observations from a univariote dependent sequence

Xy,.... Xy are divided into blocks B of | consecutive observations starting with x; ; e,
B, ={x,....xjyyq ), where i =l,...,b sand b=N-I+1. Replicaics are generated by
resampling the overlapping blocks with replacement from the set (By,..., Bp), wherein

each of the overlapping blocks B; has equal probability (1/b) of being resampled. The
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overlapping blocks picked st random are then pasted end-to-end to form a repheate of the

historical sample.

The MBB provides “synthetic” time series that preserve the empirical probability
distribution of the original observations, The MBB does not reguire one to select a model
and the only parameter required is the block length (Vogel and Shallcross, 1998). The
idea that underlies this block resampling scheme is that if the blocks are long enough,
much of the original dependence will be preserved m the resampled series. This
npproximation is best if the dependence is weak (Davison and Hinkley, 1997). The
number of bhlocks available for resampling should be large enough 1o ensure a good
estimate of the distribution of the statistic. Use of long block sizes for resampling results
in fewer blocks available for resampling as a result the synthetic replicates lack vanety.
Thus, unless the record length 15 considerable to accommodate longer and more number
of blocks, the preservation of the correlation structure of the original series may not be
possible, especially in cases of complex, long-range dependence structure. In such cases.
the block resampling schemes tend 1o generate synthetic series that are less dependent
than the orginal data. In some circumstances, this lasds to very poor resampling
approximations, Sinece this kind of boolstrap will never generale an observation cither
larger or smaller than the maximum or minimum historical observation, this technique is
not useful for examining the probability distribution of the largest or the smallest

observation, unless the sample size is greater than the planning horizon,

More recently, Lall and Sharma (1996) have used a nearest neighbour bootstrap
technique for modelling dependent streamflows. Here, the dependence is preserved in a

58



probabilistic sense. This method involves searching the historical record to find the
historical nearest neighbours and subsequently resampling their successzors with a view to
preserve the empirical dependence of the flow trace, Both MBB and k-NN resample the
observed streamflow values for generating synthetic sequences and hence the simulations
from these models cannot fill in the gaps between the data points in historical record.
Also, they fail to provide extrema more severe than what is found in the historical record.
Since the minimum extremes are of inlerest in modelling entical inter-annual low flow
sequences, particularly in and regions, such bootstrap methods may not be suitable for
the prediction of critical droughts. The subsequent work of Sharma et al. (1997) avoids
this limitation by resampling from the historic data with perturbations. The perturbations
serve to smooth over the gaps between datn points in the density estimate and provide
alternate streamflow realizations that are different, but are statisiically similar to the
historical record (Sharma et al., 1997). However, since the streamflows are bounded,
there is a possibility of leakapge of probabilities across boundaries, when the perturbation
i5 added and this may result in a bias in the simulated density in the neighbourhood of the
boundary. In order to minimize this bins, appropriate kermel functions and/or bandwidths
are to be chosen (Sharma et al., 1997}, which may be a demanding task for any practising
hydrologist. The nearest neighbour bootsteap technique and its varistions are preferable
if the data are plentiful, as in case of daily streamflow modeling (Lall and Sharma, 1996).
The limitations of this technique for modelling monthly streamflows, have been brought
out by Srinivas and Srinivasan (2001), They have reported that the standard deviation of
historical flows during low flow months are underestimated by this technique. With
increase in the model order (o >1), greater underestimation of the same is found to occur.
In addition, the first few lag senal correlations arve reported to get distorted in an effort 1o
preserve higher lag serial correlations, when higher order models are tried.
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The Generalized Cross Validation ((GCV) score function (Craven and Wahba, 1979) can
be used to choose the number of nearest neighbours and the order of the k-NN model.
This is somewhat similar 0 the use of Akaike information criteria (AIC) for model
selection in the traditional parametric modelling framework. A GCV based choice of the
model order and the number of neighbours may be suboptimal for the particular water
resources planning study under consideration, since it only considers the performance of
the model with respect to conditional mean and variance (Rajagopalan and Lall, 1999).
This necessitates further tuning to amve at the appropriate combination of the model

order and the number of neighbours for the study of interest.

Tasker and Dunne (1997) generate periodic streamflow traces based on a stochastic
srenmflow wmodel (periodic autoregressive moving average model with log-
transformation [PARMA(L,]1}-LT]} using bootstrap resampling of residuals. While
generabing sequences for a single site, each month of bootstrap sequence of remduals 13
selected by randomly selecting a year with replacement and choosing the residual for the
maonth for that year. This means that the selected residuals for each month in a bootstrap
sequence may be from a different year. They mention that the residuals extracted from
ﬂ:g fitted stochastic streamflow model will be spproximately independent (since
appropriate model is fitted at pre-whitening stage), but not identically distributed in time
and that the seasonal differences of the residual distributions can be accommodated by
bootstrapping the residuals for specific months. This model can be viewed as “model

hased resampling applicd to periedic data™. Srinivas (2001) shows the inadequacy of this
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method in modelling the serial-dependence structure and the nonlincar dependence

{estimated using state-dependent correlations) present in the streamilows.

Lall et al. (1996) present a stochastic model for resampling daily precipilation where the
probability distribution functions (pdf's) of alternating wet and dry spells and of rainfall
amount are estimated nonparametrically using kernel density estimators. This is equivalent
to a bootstrap or sampling with replacement of the observed data sequence of spell lengths
and precipitation amounts, Herein, smoothed empirical distribution functions are used for
resampling, and sequential attnibutes of spells may be preserved. Necessary calibration
parameters are chosen automatically from the data set using measures aimed at providing a
good fit to the unknown underlying pdf. The application was to model the precipitatiion in
the western USA, wherein during winter, it is in the form of snow due to orographic and
Frontal mechanisms, and convective rainfall processes are dominant in other seasons.
Marked differences in the storm tracks and moisture sources over the scasons have been
reported. A mixture of markedly different mechanisms (some related to the El Nino-
Southemn Oscillation) leads w the precipitation process in the western United States (Cayan
and Riddle, 1992), Tt is unlikely that a robust pammetric framework for model specification
and selection can be devised for uniform spplication given the likely heélerogensity in
precipitation generation mechanisms (Lall et al., 1996). The primary differences when
compared with the traditional parametric wet/dry spell models are the following: (1) the
relevant probability funclions are estimated withoul recourse to prior assumptions as to the

parametric form of the model, and (2) a more general conditional dependence structure is

admirted.
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According to Silverman (1986), sampling from the kemnel density estimate (k.d.c.} can lead
to reduced variance of the Monte-Carlo design. In addition, it also avoids the usual problem
with the bootstrap “a number of the historical values being repeated in a generated sample”™,
and provides an ability to fill in and extrapelate to a limited extent beyond the observed
values. Moreover, arbitrary, finite component mixtures ere readily admitted, without any
hypothesization or formal identification. This provides a more direct and parsimonious

representation of such structure if present in the data,

Recently, Tarboton et al. (1998) have developed a nonparametric temporal disaggregation
model for single site peniodic streamflow modelling. They have shown that a kemnel
density estimate of the joint distribution of the disaggregate flow variables can form the
basis for conditional simulation based on an input aggregate flow variable, Being data-
driven and relatively automatic, this method is able to model the nonlinearity in the
dependence structure of the historical flows to a reasonable extent. The preservation of a
variety of statistical attributes using this conditionnl simulation procedure has been
demonstrated through appheations to synthetic data and periodic streamflows from the
San Juan river in Mew Mexico, USA. Possibly due to the smoothing of the kemel density
estimate, some amount of bias is observed in the monthly standard deviations and
skewnesses of the disagpregated flows from this nonparametric dissggregation model
(see Figs. 8 and 9, Tarboton et al. 1998). Even though the marginal distributions and the
state-dependent correlations of observed Pows are reported to be better preserved
compared to SPIGOT (Fig.11, Tarboton et al,, 1998), further improvement is desirable.

The drawbacks of this method as given by Tarboton et al. (1998) are: (1) it is data and
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computationally intensive; (2) estimating an optimal bandwidth 1w use is a
computationally demanding task. As with the method of moments and the method of
maximum likelibood in the parametric case, different optimality criteria can lead to quite
different bandwidths being selected; (3) the choice of kemel function is not crucial, but
the parameterization of the bandwidth matrix in the muliivariate case may affect the
results dramatically; (4) the sample size required increases, as the complexity of the
underlying density function increases, thus reducing the advantage of the NPD approach
for heterogencous functions; {5) no simple equation for the model is available to report.
Disaggregation of annual flows to monthly flows at a single site using this nonparametric
disaggregation (NPD) model requires the estimation of & complex, 13-dimensional
density function. Tarboton et al, {1998} report that the data points in a monthly historical
record of length 80 years are inadequate for the sccurate estimation of the 13-dimensional

complex joint probability density function in terms of statistical efficiency criteria.

3.2.3 Hybrid Moving Block Bootstrap Method

More recently, hybrd moving block bootstrap (HMBB) method has been introduced by
Srimivas and Srinivasan (2000; 2001a; 2001b) for stochastic modeling of periodic
streamflows that exhibit complex dependence, based on the post-blackening approach of
Davison and Hinkley (1997).This epproach suggests using a parsimonious lincar
parameiric model for partial pre-whitening of the observed streamflows. The structure
present in the residuals extracted from the partial pre-whitening stage is simulated by
MBEB. The resulting innovations are post-blackened to synthesize the replicates of the

observed flows. Hereafter, this modet will be referred to as Hybrid Moving Block
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Bootstrap (HMBB). In order 1o preserve the autocorrelation structure ai the annual level
and the cross-year serial correlation structure (that are essentinl for the efficient
prediction of reservoir storage statistic and modeling eritical ran chameteristics), HMBB
requires resampling long blocks of residuals, particularly when the cross-year
dependence 15 strong. This 18 because HMBB uses MBDB for resampling the residuals, the
limitations of which have already been mentioned. As a result, variety and smoothing in
the simmlations get reduced, which in tum, reduces the vanability m the simulated critical
run charpcteristics and reservorr storage capacily (validetion statistics of direct interest (o

investigator), thus affecting the design decisions,

13 MOTIVATION and PRESENT STUDY

The motivation for the method of periodic streamflow modeling presented in this
research work comes from a desire 1o develop a potential nonparametric stochastic model
that is effective in reproducing summary statistics, dependence structure and the salient
features of marginal distribution (multimodality, peskedness and asymmetry) without
compromising on smoothing, extrapolation and vanety in simulations. Such an ideal
model is expected to be effective in reproducing validation statistics |Stedinger and
Taylar, 1982] such as slorage capacity and critical/mean run characteristics that are of
interest to the investigator. In this regard, the matched block bootstrap method presented
in recent works [Hesterberg, 1997, Carlstein et al., 1998] seems 1o be useful. These
works suggest improving the performance of MBB in modeling data with strong and/or
long range dependence through matching rules for resampling moving blocks, Out of a

few matching rules recommended by Carlstein ef al [1998], the rank matching rule wias



found to be more accurate and penerally satisfactory [Hesrerberg, 1997). In a rank
matching procedure, the blocks are matched using a single value at the beginning or the
end of & block. It is well suited for Markov processes, in which the last value in 2 block

i5 assumed 1o contain all the information in the block for predicting future observations.

In this research work, a new nonparametric simulation model is proposed to synthesize
multi-season (periodic) streamflows, based on the rank maiching idea of Carlsrein ef al
[1998]. In the proposed method, non-overlapping within-year blocks (formed from the
observed time series) are first resampled using rank matching rule of Caristein ef al
[199%] and these resampled blocks are subsequently perturbed using a simple weighted
smoothing strategy to achieve smoothing and extrapolation in simulations.

The following sections will deal with: 1) the description of the algorithm of the perturbed
matched block bootstrap (PMABB) method that is proposed in this research work; ii) the
evaluation of the performance of PMABR through application to synthetic da from &
known self-exciting seasonal threshold autoregressive moving average model; and i) the
comparison of the performance of the proposed model with the periodic k-nearest
neighbour bootstrap technique (Lall and Sharma, 1996; Srinivas and Srinivasan, 2001a)
(referred as Pk-NN) and the hybrid stochastic streamflow model introduced by Srinivas
and Srinivasan (2001b) (referred as HMBB), using the monthly streamflows measured al
two siies, one on the river Narmada and the other on the river Hemavathi (a major

tributary of Cauvery ). Finally a set of conclusions is drawr.
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34 ALGORITHMS

This section deseribes the model structure and the algorithms of! (1) the Periodic k-
Mearest Neighbour (Pk-WIN) resampling techmique; (ii) the Hybrid moving block
bootstrap (HMBB) method and (jii) the Perturbed Matched Block Bootstrap (PMABB)
method..In these descriptions of the model algorithms, bold upper case letters will

represent vectors,

3.4.1 The Periodic k-Nearest Neighbour (Ph-NN) Resampling Algorithm

The I:-f'ITH bootstrap method for resampling hydrologic time series was proposed by
Lall and Sharma (1996). This method has been developed for modelling dependent duta
and it preserves the dependence in a probahbilistic sense. Multivariate nearest neighbour
probability density estimation provides the basis for this method. Herein, the k-NN
resampling algorithm of Lall and Sharma (1996) is adapted t0 model periodic
streamflows and hence the same is refermed o as Periodic k-Nearest Neighbour (PE-NN)
respmpling algorithm.

Let the time series of observed penodic streamflows be denoted by Oy ¢, where v is
the index for year {v =1...., N) and t denotes the index for month within the year (t =1,

.oy ), N refers to the number of years of historical record and @ represents number of

maonths:(=12) within the year.

Let the hydrological water year start with the month of June of a calendar year and end

with the month of May of the subsequent calendar vear. Now, the first value to be
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simulated will be June month flow. For this, one has to pick mndomly eny one of the N

June month Nows from the historical data. Let it be denoted as g, ,, where § s the water

year to which the flow value belongs.

Fellowing are the sequential sieps involved in the synthetic simulation of observed
periodic streamflow data using this method:

1. Deline the composition of the “feature vector™ of dimension d.
For example, for order of dependence equal to two (@=2), initial feature vector for

simulating the June month flow will be the conditioning set {g,_, 3 Qi 1+ THiS

represents the dependence of the June flow to be simulated on two prior monthly
flows (1.e, May and April flows of the previous water year respectively).
The historical state vectors Dy for any month T, are the feature vectors of all q, | in

the historical record. For example, for simulating June month flow, the historical

sinle vectors Wi“ h’ﬂ: h|._:{||.|_._| In---vtril.l.',u"qH,ll-l]

2. Denote the current feature vector as [)f and determine ifs & nearest neighbours from
among the histonical state vectors for that month Dy, using the weighted Euclidean

distance 7.

r 1F3
’~=[Z“’J (¥ “"’-ar'l"l] (3.1)

J=!
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In eq(4.5), r; is the weighted Euchidenn distance from the curmrent feature vector fo
the “v th™ historical state vector among the histoncal state vectors D¢ for the month

n Y ™ igthe *f th"” component of the current feature vector; and “Vy * stands for the
% th" component of the “v th" historical state vector. The weights w, are chosen a
priori as inverse of some measure of scale such as standard deviation or range of V

that comprises of the j th components of the historical state vectors Dy for the month

1. The number of neighbours “k" is 8 smoothing parameter. It may be chosen using
any appropriate order selection sirategy such as generalised cross-validation (GCY)
(Craven and Wahba, 1979). Lall and Sharma (1996) suggest using k equal to square

oot of the sample size as a rale of thumb.

3. Denote the ordered set of nearest neighbour indices by Jj . where u=1....& An
element j{i} of this set records the time v associated with the j-th closest historical
state vector to [} among Dy, Denote xsj(;j s the sucoessor 1o Dj(i) - If the data are

highly quantized, it is possible that a number of observations may be at the same

distance from the conditioning point, in which case o permuting may help.

4. Define a discrete kemel K(Gii)) for resampling one of the xsj[i} as follows :

Kij{i}) = U (3.2)

1

F o
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where K(j{)) is the probability wiath which n‘r‘j{i} 1% resampled. 1t is 1o be noted that
this resampling kemnel iz the same For any i, ond can be computed and stored prior to
the start of simulation. Lall and Sharma (1996) develop this kemel through o local

Poisson approximation of the probability density function of state space neighbours.

5. Using the discrete probability mass function K{f({)), resample an :r.f'j{ﬂ and update

the cumment feature vector, Proceed to step 2, if additional simulated values are
required to be generated. For a more detailed discussion on the k-NN algorithm, the

reader is referred to Lall and Sharma (1996) and Rajagopalan and Lall (1999).

34.2 Periodic Hybrid Moving Block Bootstrap (HMBR)

This section presents a new algorithm for penerating periodic synthetic streamflows that

extends the Posi-blackening approach supgested by Davison and Hinkley ( 1997).

Let the observed (historical) streamflows be represented by the vector Q. , where v is the
index for year (v=1.....N) and t denotes the index for season (period) within the vear (1
*ly.@), M orefers 10 the number of years of historical record and o represents the

number of periods within the year. The modeling steps involved are as follows:

1. Standardize the elements of the vector Q. as:

q =
Vg = i;;—— (3.3)
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where §, and s are respectively the mean and the standard deviation of the

ohserved streamflows in period © Nete that the historical streamflows are not

transformed to remove skewness.

. Pre-whiten the standardized historical streamflows, Y., using a simple periodic

auntoregressive model of order anc (PAR(1)), and extract the residuals E'f.r -

Eyr =¥er = Prr Yer-i (3.4)
In eq (3.4}, @y, ... o arc the penodic autoregressive parameters of order one.
Herein, for the parameter estimation, 2 simple method of moments (Salas et al., 1980)
has been used. [t is to be noted that the residuals €, may possess some weak
dependence (since the parameters are estimated from a simple PAR{1} model)

Herein, it is to be mentioned that bootstrap schemes like moving block bootstrap

(MBRE) ( Kiinsch, 1989) can serve as a reliable tool for modeling the weak linenr

dependence, if any, in the residuals. Moreever, this scheme being data-driven, can be
expected o capture the marginal distribution features, and to a certain extenl may be
able to preserve the non-linear dependence inherent in the observed record, possibly
with some trade-off’ with regard to smoothing and peneration of extrema, when

compared 1o parametric models.

. Dbtain the simulated innovations E:_r by bootstrapping €, . using the Moving
block bootstrap (MBB) ( Kiinsch, 1989) method,  Herein, the monthly residuals

resulting from the PAR(1) model are divided into q number of (possibly) overlapping
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blocks B; with block size “/” taken as an integral multiple of the number of periods
() within the year. It is to be noted that each of the overlapping blocks staris with
the first period of a hydrological water year. This is done with a view to capture the

within-year correlations for significant number of lags. For example, the block sizes

of residuals in monthly streamflow modelling context would be 12, 24, 36, and 50 on
(abbreviated as ] =, I = 2a, [=3m and 50 on). Note that when block length [ is

“n" years long, the overlap 15 (n-1) years, indicating that when the block size 15 one

year long, there is no overlap.

In general, the / th block of size | = ma (m is a positive integer, such that,
m=1,....N), may be written as : B; =& ;... ;,10)
where i=1,....b and b=N-m+l.

For example, if | = 3o and ® =12, the 4-th block 15 written as: 8; = (8410e g2l

The block size /, to be selected for resampling the residuals, would primarily depend

on the amount of unextracted weak dependence present in the residuals. Innovations

£ ., are generated by resampling the overlapping blocks B; at random, with

replacement from the set (B,,.... B,) and pasting them end-to-end. It is to be noted
that each of the (possibly} overlapping blocks has equal probability (1/b) of being

resampied.

. The innovation serics E:,_r is then "post-blackened” by using eg.(3.5) to obtain the

sequence Lo .
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Lyy =Py &z TE :'.1 (3.3)
The synthetic generation process starts with z,, = 0, The "warm-up" period is chosen

o be large enough 1o remove any initial bias, The values of Z,; are then inverse

standardized using eg. (3.6), to obtain the synthetic streamflow replicate X, ..

Xog =(Zy -~ 5 )+ (3.6)
It is 10 be noted that no normalizing transformation is applied in case of the hybrd model.
Herein, it is to be mentioned that, when the number of data points in the historical record
ig limited {as in case of annual streamflow modeling), the mean of residuals recovered
from the pre-whitening stage need not be necessarily equal to zero. In such a case, the
residuals are to be re-centered to zero before proceeding with resampling them for
generating the innovation senes (Davison and Hinkley, 1997, p.397). However, when the
data points are relatively plentiful {as in case of periedic streamflow modeling), we find
that the sum of residuals recovered from partial pre-whitening stage tends to zero and

hence the residoals need not be re-centered.

3.4.3 Perturbed Matched Block Bootstrap (FPMARE)

In this section, we present a new nonparametric method “Perturbed Matched Block
Bootstrap (PMABB)” for simulation of multi-season hydrologic time series, based on the
idea of rank matching proposed by Carlsiein er al. [1998]. The rank matching method
suggests constructing a Markov chain by resampling the blocks formed from the given
data sample by aligning with higher hkelihood those blocks that match at their ends.

Here, we propose the algorithm, in general, for resampling within-year blocks of either
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equal or unequal lengths. In cases where the identification of the different seasons within

the water year is clear, the block lengths can be chosen accordingly, so that the complex

dependence structure present in the underlying hydrologic process can be well recovered.

In the description to follow, vectors will be represented by bold upper case letters.

Let the observed (historical) periodic streamflows be represented by the vector 4,
where v is the index for vear {v = 1,....N} and t deénctes the index for period within the
year {t=1,...,m), N refers to the length of observed record (in years), and o

represents the number of periods within the year,

For each year of the observed record, prepare *n" number of non-overlapping within-year

hlocks H,’,",.---.B:,, with the respective lengths being L[,..., L7, such that the lengths

fl
of all the within-year blocks sum w @, ie, ¥ L} =w@. Herein, B denotes the ("
i=1

th within-year block in the year *v” of the observed streamflow record.

0 iff=]
W i =
B'I-'.r_{':.l'r..!n'-rl_u---qr'sﬂ:l where §= I}:LT atl iga {37.]
J=1

Let ¢, denote the last flow value (end element) of B,

0 ifi=1
Wiy VRIS W herwise G.8)
Ju

Form the sets E?:Er={cn..-..er.rlf} 1<isn
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Armrange the elements of E}Y in ascending (or descending) order of their magnitude and

assign ranks. Let r.,,'.‘:,- denote therank of &, for 1 =i<w and 1<v<N The
algorithm 15 initialized by randomly selecting ong of the N first within-yvear blocks

Byys--vByr - This block is referred to as current within-year block at the start of

simulation.

The key steps in the resampling algorithm are as follows:

(i) Identify the rank of the end clement of the current within-year block. Let it be
denoted by Re.

(i) SBelect the nearest neighbor to the current within-year block. For this, randomly
select ome of the "2m+1" ncighboring blocks to the curremt block, whose end
elements have ranks between (R, — m) and (R, + m), where m is a small positive
integer. This requires generating & uniform random number “U™ in the range of
integers (R, —m) and (R; + m), Whenever (R, — m) becomes less than 1 or (R, + m}
becomes greater than “b”, one may end up with a value of U, that is either less than 1

or greater than b, Such a rank does not correspond to any block, This artifact can be

overcome by folding back (or reflecting) L to i, Hereafier, this procedure would be

referred to as method of reflection for rank. Meighboring block is the one that

corresponds to the rank U in the given record.

U=

L] - i -lrl
2h+1-1 _ﬂ‘ - (3.9)
1-U if U<l

The neighborhood “2m+17™ to a current within year block is referred to as band width.
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{ni}) Obtain the within-year block that follows the selected neighboring within-year
block m the given record and append it to the current within-vear block, Note that, if
the current within-year block is the last within-vear block in a year, then the block to

be appended will be the first within-year block in the next year. However, if the
selected within-year block is B) ., then it does not have any block following it. One
option to overcome this problem is to create a circular time series such that the block

following By , would be B[ . Another option is to reflect the within-year blocks of
the last year of the given record using 8= BY, ., __ | for v =N+1, so0 that the block

following By , (i.e., B:frhlilth block) would be .B‘;:."]. Herein, the latter option

referred to as method of reflection of blocks (MRB) is used for coping with this

problem.

{iv) The recently appended block becomes the new currenl within-year block. Proceed lo

step (i), if additional simulated values are required to be generated.

One of the options for synthesizing replicates could be to break the long sequence of
simulated values (appended blocks) into non-overlapping blocks of length equal to that of
the observed record. Other option would be to initialize simulation of each replicate

through random selection of current block. The latter option would enhance the chance of
selection of the first block B’ﬁ when MEB method is wsed in resampling the blocks.
Otherwise the first block in the data set would never be selected in the simulation {except

upan initialization), because it does not follow any block with end element in vector E; .



Smoothing the resampled blocks

Let the sequence resulting from concatenating the blocks resampled using rank
matching rule be denoted by the vector X, ;. One can smooth X, ; by using an appropriate
perturbation strategy, such as the weighted smoothing adopted herein. However, it has to
be ensured that the perturbation does not have any adverse effect on the reproduction of
the statistical attributes of X, ;. In literature, smoothing plans have been developed for
many kinds of data [Felleman et al, 1981; Bowman and Azzalini, 1997]. Herein, we use
weighted smoothing with & window size of 12 months (equal to the number of seasons in
a water year), Random weights * W, " are generated in the range p of real numbers 9 [1-
B, 148] for each year v of the resampled series, where 3 is a small positive fraction. The

simulated time series Y, ; is

given by Yo =WunXy: forv=l..Nt=1L..0 (3.10)
Typically, for finite samples of size 50 to 200 years, a choice of & ranging from 0,05 w
.15 has been found appropriate. Even though the choice of higher value of 8 enhances
smoothing and extrapolation value in simulations, it affects the performance of the model
in simulating the correlation structure and other statistics of concem. Consequently, the
validation performance of the model, measured in terms of prediction of storage and run

charactenstics, drops. Thus, caution should be exercised in opting for a higher & value.

The issue of choosing the number of neighbours w (= 2m +1) 10 be used in rank
matching, has been discussed in detail by Hesterberg [1997] and Carlstein et al. [1998].

They have provided sugpestions for the number of neighbors based on minimizing
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asymplotic mean sgquare error of the logarithm of the variance of the sample mean
considering sample sizes ranging from 200 to 5000. However, while dealing with short
hydrologic records. it would be appropriate to experiment with different possible choices
of “m™ and select the effective value to be adopted, after analyzing the resulting behavior
(E. Carlxtein, Persomal communication, 2000). The information required to run the source

programs developed for PMABB (periodic streamflow model) 1s given in Appendix - 1.

35 APPLICATION STUDY

In this section, the ability of the proposed monparametric method in recovering the
statistical attributes from & known population is tested. The proposed method is then
applied to simulate monthly streamflows of the Narmada and the Hemavathi rivers. The
performance of the model is verified in terms of preservation of the following statistical
attributes: (i) summary statistics (mean, standard deviation and skewness); (1) serial
correlations (both within-year and cross-vear); (iii) sutocomelations at the agprepated
annual level; and (iv) state-dependent correlations {introduced by Sharma et al. [1997] as

a measure of nonlinear dependence).

351 Test with Symthetic Dara

To test the propossd multi-season PMABRB method Ffor its ability 1o recover the
statistical attributes including the dependence structure (both linear and non-linear) from
a known population, we use the self-exciting seasonal threshold ARMA (SESTARMA)
model described by Srimvar and Srinivasan [2001a). A two-level Monte-Carlo
experiment is designed. In the first level, 100 samples. each of size 4N (N years » 4

sepsons). are penerated from SESTARMA model (known popuolation).  These 100
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samples are referred to 45 level-1 samples. The second level involves generating 100
replicates, each of size 4N (N years x 4 seasons), for each of the 100 level-1 samples,

using the proposed PMABB method. The 10,000 replicates resulting from the Monte-

Carle simulations at the second level are referred to as level-2 replicates.

The SESTARMA model used for generating level-1 samples is:

First season:
x; =02x,_4 +035x,_» + 0.6, if xq <0

x,=09x, -~ 0160, +0.6W,  otherwise

Second season:
x, =0.5x,, -0.12, , +0.TW, if x,<0
5, =09, +02x, , +0.7W, otherwise
Third season:

x, =045z, , -0.245W , +0.5W, if z,<0
x, =0.15x_,+03x_, +05F, otherwise

Fourth seasomn:
x, ==1.0-05x_ 01K _ +08W, it x, <0

x, =08z  +02x , +08W otherwise {3.11)

where W, 15 a Gaussian random variale with zero mean and unit standard deviation.
Preservation of the various average statistical attributes over the 100 level-1 samples

{indicative of the population statistics), by the 10000 level-2 replicates generated from

PMABR would indicate that the candidate model is able to recover the structure

contained in the population effectively.
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A comparison of the population statistics and the simulated statistcs from 10,000
replicates, is presented in Figure 3.1 for a typical sample size N = 40 (for brevity) using
box-plots. In these box-plots, the span of the box (inter-quartile range} and the whiskers
together indicate the sampling variability associated with each statistic. |t 13 evident from
the figure that the PMABB model iz able to reproduce the summary statistics and the
dependence structure (both linear and non-linear) fairly well. These results sugpest that
the multi-season PMABB model can recover the statistical attributes including the

dependence structure from a known population (Fig. 3.1).

(A) - (2 2 {c)

i : Bl
it %%% 7 f R
i Fnnmim Flnani
g E“% (o) - (E)

| %%ﬁ@?%*é% :

q T,

FORETIM DRI

Figure 3.1: Preservation of the summary siatistics and the dependence structure of level-1 zamples by level-
2 replicates from PMABB (L= Z; w = 3; p = 0.%0-1.10) model for sample size 40. (A) Season-1 ;(H)
Seasan-2; (C) Season-3; (D)) Season-d and (E) Anmvunl, The circle denotés the avemapge value of
siatistic over 100 level-1 samples and the darkened square indicates the mean vahwe of stotlstic over
10,0040 [evel-2 replicates. A lipe in the middie of the box represents median, SC-1, 5C-2, 5C-3,  and
SC-4 demote serial comelations for Ing-1, lag-Z. Ing-3, pod lapg-4 respectively. AC-1 and AC-2 refer to
nutceerrelations Tor lag-1 and lag-2 respectively,

AMEF: forwand and above medin correlation; BMF: forward and below median corebation;
AMB: hackward and above median comelation; BMEB: backword and below median correlation,
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3.5.2, Test with Real Data Seis

In this section, the proposed multi-season PMABB model is applied to the monthly
streamflow records measured at (i) Jamiara gauge site (just downstream of the Bargi dam
site)) on the river Narmada and (ii) Akkihebbal gauge site located on the rver Hemavathi,
one of the major tributaries of the river Cauvery, To demonsirate effectiveness of the
proposed method, the results from the application of the PMABE model is compared
with those from (i} the peniodic k-NN model (Lall and Sharma, 19%96; Srinivas and
Srinivasan, 2001); and (ii) the Hybrid periodic stochastic model, HMBB (Srinivas and

Srinivasan, 2001a,b).

The Narmada river rises in the Mikel range in Shahdol distnct near Amarkantak ai an
elevation of 1050 m. It passes through the states of Madhya Pradesh and Gujarat and
Mows westwards 1o the Arabian sea. The unregulated streamilows measured at the gauge
site Jamtara (located st 16 km downstream of Bargi dam site) have been vsed. Systematic
gauging has been done at this site since 1949 (NIH, 1996). The average anmual flow at
the dam site is 7197 Mm®. Most purt of the streamflows are meceived during the southwest
mensoon monthe, namely, July o October. The Bargi dam is a multi-purpose project that
caters o water supply (for domestic and industrial consumplion), irrigation and
hydropower. The index map (Fig, 3.2) shows the dam and the river gauging site on the
river Narmada, The monthly inflow data at the Bargi reservoir for the period 1951-1990
(Table 3.1) as provided in the technical report TR(BR) 143 of the National Institute of
Hydrology (NTH, 1996) has been used as the first case example for the periodic stochastic

streamflow modeling in this study.



Table 3.1: Monthly Inflow series at the Bargi reservoir for the period 1951-1990
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Fig 3.2: Index Map of Bargi Dam Site (Source: Report No. TR(BR) 143, NIH, 1996)

The Hemavathi river is one of the main tributarics of the river Cauvery (Fig. 3.3). Its
source is in the Mudigere taluk of Chickmagalur district of Kamnataka state in Southern
India. The river travels o distance of 193 km through the districts of Hassan and Mandya
before joining the river Cauvery in the water spread of Krishnarajasagar (KRS) reservoir

in Mandya district. The total drainage area of the river is 5910 km”. The mean monthly
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Fig 3.3 Location of Hemavathy Subbasin within Cauvery River Basin
{Source: Report No. TR-53, NIH, 1986)

temperatures vary in the range 18 o 32 degrees Celsivs and the predominant soils are red
loam and red loamy sand. The rainfall is received from the Southwest monsoon and
sccordingly the Aows are significant in the months June to Cotober, The unregulated flow
data at the gauging station Akkihebbal (shown in Fig. 3.4) has been used as the second
case example for the periodic stochastic modeling of streamflows in this study. The

nunoff data used are for the period 1916-1974 (58 years) (WRDC, 19756).
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Fig 3.4 Location of River Gauge Stations in the Hemavathy Subbasin
(Source: Report No. TR-53, NTH, 1986)

Asg mentioned earlier, the following three periodic stochastic models were used 10 model
the monthly streamflows at Bargi dam site and at Akkihebbal: (i) k-nearest neighboar
bootstrap (k-NN), a non-parametric model; (i) hybrid moving block bootstrap, a hybrid
of low-order linear parametric model and moving block bootstrap (HMBB) (i)
perturbed matched block bootstrap (PMABB), a non-parametric method proposed in this
study. For the k-NN mul:lr:l.l the model order (d) and the number of neighbours (k) were
arrived at based on the guidelines provided by Lall and Sharma (1996). For the HMBB
model, the structure of the linear periodic parametric model {used for partial pre-

whitening) and the size of the moving block to be used for bootstrapping the residuals



were decided together due to the hybrid character of the model. For the PMABR model,
the size of the within-year matched block size to be used for bootstrapping the flows, the
number of adjoiming elements (band width} to be considered in the rank matching
procedure, and the weighting parameter to be used in smoothing bad to be decided
together through a detailed trial and error process. In case of both the sites and for all the
three methods adopted, the selection of the appropriate combination of the models and
the parameters was done through a detailed verification followed by dgorous validation
process (based on the preservation of storage and drought related statistics ot various
demand levels'runcation levels). The verification was based on the reproducibility of the
summary statistics, the serial correlation structure for four lags, the one-lag state-
dependent correlations of the historical monthly streamflows. It is to be mentioned that
the ability of the models o simulate non-linear dependence is portrayed using state-

dependent cormelations suggested by Sharma et al. (1997).

3.5.2.1 Cage Example - 1 Jamtara (Bargi dam site) on river Narmada

For all the three models attempted, the altemative model structure choices considered
and the parameters of the selected model structure are presented in Table 1.2 A
comparative analysis of the efficacy of the three types of models in modeling the monthly

streamflows at Bargi dam site, is presenled in the following fow parapraphs.

85



Table 3.2: Parameters of the Selected Models — Bargi dam site,

k-Nearest Neighbour Model: k (number of neighbours for resampling) = §;
d (model order) =1.
HMBE Model: PAR{ 1) model with no transformation

Mon-overlapping block size L. = 24 months (for
resampling)
FMABB Model: Matched Block Size: L=4
MNumber of elements taken for resampling: w=35
smocthing Parameter: p=0.9 - 1.1
Repraduction of summary slatistics:
The reproduction of the summary statistics of the monthly flows is presented in Table
3.3.The means of the monthly flows are underestimated by k-NN in 6 oul of 12 months;
HMBE underestimates the same in 4 out of 12 months and over estimates the same in 2
out of 12 months, while the proposed PMABB model is able to reproduce the mean
monthly flows well in all the 12 months, The standard deviations of the monthly flows
are underestimated by both k-NN and HMBB in 6 out of 12 menths; while in general,
PMABR exhibits much less bias in reproducing the standard deviation of the monthly
flows (Table 3.3). It may be observed from Table 3.3 that the skewness coefficients of the
monthly flows are preserved well in general by all the 3 models considered, except in
three of the low flow months. Even in that case, the proposed PMARRB model seems o
perform better than the k-NN and the HMBB models. Thus, the PMABB model
reproduces the summary statistics of the historical flows of the Narmada river at Barpi

dam site better than the other two models considerad, namely, k-NN and HMBB.
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Table 3.3: Reproduction of Summary Statistics: Monthly Streamflows — Bargi Dam site

Menth Madel Mean Std, Deviation Skewness
June Historical 144,25 229.73 .89
NN 19,82 175.26 2.62
HMBB 54,24 230.05 248
FMABR 145,69 21883 .63
Tuly Historical 1503.1 1095.2 1.08
k-MM 1481.2 1743 1.18
HMBH 15565 10314 .52
FMABBE 15232 10781 1.01
| Aupust Historical 30723 1336.7 -0,06
k-MM 3002 13253 -008
HMBH iz 13018 -0.04
PMABB 30403 13865 007
September | Historical 1613.5 11736 .14
kNN 1600, 329 1.0
HMBR B3 553 [
PMABB 393 672 0.99
Oetnber Historical 4193 324,18 .15
k-NN 414,95 31493 112
HMBD 21.42 32338 L
FMABR 414,72 318.99 1.15%
November | Historical 118.67 7309 1.04
kNN 117.45 70.14 108
HMBEB | 16.55 67953 .83
PMARB | 157 TA26 087
December Historical T6H.92 TOAE 2.Bh
BN 7343 60.43 157
HMEB 7363 39.62 242
PMABE Thal 6B T 150
Jnauary Historical 5695 4333 .87
k-MM 55.68 In76 IRl
HMEBEB 3496 1817 .78
PMABRR 5689 A2.54 1.89
February | Historical 4107 323 1.34
k-NN 41.64 3231 i3l
HMBR 4054 3119 13
PMABT AD.E1 1183 133
March Historical 23.02 2196 13
kNN 2341 18.01 1.6l
HMBD 23 66 1811 157
PMABH 3495 2126 153
Aprl Historical 1249 17.83 475
k-NN 1034 023 202
HMBE 11.08 11.06 256
FMAEH 1256 1621 3.4
May Historical 132 20,3 6.08
k-NN [EE 4.12 .55
HMBR 541 10,50 188
PMABE 739 17.01 .60
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Preservation of Serial Correlations

The preservation of serial correlations for lags 1-4 arc shown in Fig. 3.5a. From Fig, 3.5a
it is observed that k-NN model is not able 1o preserve the serial correlations for 5 out of
12 months for lags 1-4. Similarly it is observed (Fig 3.52) that HMBB models are not
able 1o preserve the serial correlations in: 5 out of 12 months for both lags 1 and 2; 2 owt
of 12 months for lag-3 senal comrelation and | out of 12 months for lag-4 senal
correlation. In case of PMABB model. it is observed (Fig. 3.5a) that senal correlations
for lug-1 are preserved well for all the months; whereas, log-2, lag-3 and lag-4 serial
correlztions display some bias in a few months. The fact that PMABB model could
simulate the linear correlations fairly well by resampling short within-year blocks (1. = £),
is quite striking. Here, the PMABB model is primarily gaining from the conditional

resampling based on matching the end elements of the within-year blocks,

Preservation of First order state-dependent correlations

The preservation of the first order state-dependent comrelations namely, above median
backward (AMB), below median backward (BMB), above median forward (AMF), and
bhelow median forward (BMF) proposed by Shurma et al. (1997), has been presented in
Fig. 3.6. From the Fig 3.6 it may be observed that all the three models have performed
reasonably well in preserving BMB and BMF correlations. However, il may be seen that
k-NN end HMBB models underestimate the above medien correlations AMB and AMF

in 4 out of 12 months, compared with PMABE.
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3.52.2 Case Example — 2: River Hemavathi (station: Akkihebbal)

For all the three models attempted, the alternative model structure choices considered
and the parameters of the selected models are presented in Table 34 A comparative
anilysis of the eflicacy of the three types of models in modeling the monthly stream{ows
for mver Hemavathi (measured at Akkihebbal), is presenied in the following few
paragraphs.

Table 3.4 Parameters of the Selected Models — Akkihebbal,

k-MNearest Neighbour Model: k {mumber of neighbours for resempling) = §;
d {model order) =1.
HMERB Model: PAR(!) model with no transformation

Non-overlapping block size L = 24 months (for
resampling of the residuals)
FMABB Model: Matched Block Size: L=4
Mumber of elements taken for resampling; w=5
Smoothing Parameter: p=09—1.1
Repraduction of summary statisiics;
The reproduction of the summary statistics of the monthly flows is presented in Table
1.5. The means of monthly flows are generally well reproduced by all the three models
excepling some bias in | out of 12 months. The standard deviations of the monthly flows
is underestimated by k-NN model in 4 out of 12 months and in 2 out of 12 months by
HMBR model; while, PMABB model underestimates the same in 1 out of 12 months.
The skewness coefficients of the monthly flows are well preserved, in general, by all the

three models considered {Table 3.5).
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Table 3.5: Reproduction of Summary Statistics: Monthly Streamflows — Akkibhchbal

Mionth Model Mean Std. Devintion Skewness
June Historical 149.56 125.23 1.62
kNN 145.79 IZ3.13 1.59
HMBE 142.9 105.32 0.92
PMABB 144 85 105.07 1.02
July Historieal LECHN 519.59 2.06
k=N 878.2 5id.88 1.8
HMBD B63.92 3098 1.91
FMABE BoB.63 S00.32 1.87
August Historical 66529 351.74 .09
k=WN 667,07 351.04 09
HMBE 664,27 348.96 1.06
PMABE O 9% 350,82 1.13
September | Historical 207,82 45 24 A9
k-NN 201.95 41 &4 1.43
HMBE 29826 146, 1 1.36
PMABB 295.01 147,81 142
October Histarical 28534 184,45 1.%
k-MNM 281.42 17432 L43
HMBE 286.88 180,15 141
PMABE 283,935 184,05 145
November | Historical 127,16 %61 133
k-NN |28.92 95,91 A8
HMBE 12609 92.33 k]
. PMABE 125,08 54,00 137
| December | Historical 5467 3126 2.36
kN M7 3179 16
HMBH SA67 31.26 17
PMABE S4.45 3139 1.83
January Historical 29.594 10.3% .38
E-NN. 29.51 &.63 .24

HMEH 1908 1035 033
. PMABE 20.81 10.45 0,38
Febrery Historical | 825 T -4.13
k-NMN | .05 654 .05
HMBE 1811 B | <02

PMADB 1819 642 404

March Historical 13.68 6.65 016
k-NN 13.76 G632 018

‘ﬁ’&_\ﬂ" 1.69 6.52 -0.17
IABR 3.63 b.68 -0.1

April Historical 1424 7.49 -0.0%
E-NM 1422 732 -0.01

HMEH 1433 743 006
PMAEB 1433 .48 001
My Historical 1557 2527 |64
k-NM 3495 26.54 1.52
HMEB 3629 27,86 .54
PMABB 35.16 2737 1.51




Preservation of Serial Correlations:

From Fig. 3.5b it is observed that k-NMN model is not able to preserve: the lag-1 serial
correlations in 5 out of 12 months; lag-2 serial correlations in 6 out of 12 months; and
lag-3 and lag-4 serial correlations in 7 out of 12 months. While, in case of HMBB model,
the lag-1 to lag-4 serial correlations are not preserved in only one out of 12 months. In
case of PMABB model, it is observed {Fig. 3.5b) that the lag-1 senal correlations are
preserved well, while, the lag-2 and the lag-3 serial correlations are not preserved
satisfactorily in 2 out of 12 months and I.I1|: lag-4 scrial correlations are not preserved well
in | owd of 12 months,

Preservation of Firsi order state-dependent correlations;

The preservation of the first order state-dependent correlations have been presented in
Fig. 3.7, From the Fig 3.7, it may be observed that all the three models have performed
reasonably well in preserving BMB and BMF correlations. However, it may be seen that
the k-NN medel exhibits more relative bias in the above median correlations AMB and

AMEF ina few months, when compared with the HMBB and the PMABR medels.
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A.5.3 Performance Validation of the Stochastie Streamfow Models

The simulations from the models are validated by examining their ability to (i) predict
reservoir storage capacity and (ii) preserve critical run characteristics (validation statistics
according to Stedinger and Taylor, 1982). Herein, the reservoir storage capacities
required to cater to yields of 50% Mean Annual Flow (MAF) to 90% MAF (at 5% MAF
intervals) are computed using the scquent peak algorithm (Lowcks ef al; 1981, p.235),
assuming the demand 1o be fixed and uniform over the twelve months of the water year,
Drought characteristics are quantified using the theory of runs { Yevievich, 1967), that is
based on a threshold level, referred to as truncation. According to this theory, drought is
viewed as a negative run that denotes an uninterrupted sequence of streamflow values
that lies below the specified truncation level, The run charactenstics considered for the
cvaluation of the relative performance of the three nonparametric models arve: (i)
Maximum Run Length (MARL), (it) Maximum Run Sum {(MARS), (iii) Mean Run
Length (MERL), and (iv) Mean Run Sum (MERS). Herein, the truncation levels have
been chosen as percentages of the historical mean monthly flows (MMF) (50% 10 100%

MMF &t mtervals of 5% MMF).

Lt ""ﬂﬂ"" denote the length and 8 denote the volume of water below a :_lpl::;:-jﬁcd

truncation level (ie., deficit volume in Million m®) for the 7 th negative run. Then, the

aforementioned run characieristics can be expresses as:
MARL = max Id'!h""r'tﬂnll'ﬂ]: [3]1}

MARS = max [ £5.... 855 )i (3.13)
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MERL = =L
NE
NR
E*‘ f
MERS = i=1

NR

(3.14)

(3.15)

where NR denotes the total number of runs in the flow sequence (historical/synthetic).

1.5.3.1 Prediction of Reservoir Storage Capacity — Bargi dam site

Tahle 3.6: shows that both k-NN and PMABB models overestimate the reservoir storage

capacity in the range of demand levels 50% to 75% MAF with low variance as well. On

the other hand, the HMBB model predicts the reservoir storage capacity better in the

range of above demand levels, while it underestimates the same at higher demand levels.

Table 3.6: Comparison of Prediction of Reservolr Storage Capacity ~Bargi Dam site
Meon Synthetic Capacity
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npacky

35623
4]153.1
47441
338.1
B493.6
4319
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13395
18252
23846

E-PH
4133.4
51208
50849
G487
80727
9429.1

11176

| 3620
17656
24642

HMER
k1]
4545.9
3046
63314
Tigd,9
B5482
Tir14

11848

4444

18692

Pl B
475
5237.5
BG3.7
69974
LR
9395.7
1T
13362
16803
22054

Rekative Bins

=N
0218
4233
262
0252
<243
0.268
), 166
0,017
0.038
0033

HREBR
1073
<0005k
0,137
-0.145
0. 137
0,149
-0.045
0113
021
216

FPHMARR
0256
0261
0,279
0,261
0,245
-0.263
0156
{1002
(F081
0.037

1.5.3.2 Prediction of Reserveir Storage Capacity - Akkthebbal

Relative RMEE
k-MK  HMAR PFMARE
0,333 ol68 0333
333 mI% 034
0386 0245 0369
0389 0274 0366
0,393 02% 0369
D426 0318 0407
0372 G2E7 0352
0,338 0295 031
0423 035% 0361
0567 O431 0471

Table 3.7 shows that all three models (k-NN, HMBB and PMABRB) perform well in

predicting the reserveir storage capacity. However, k-NN underesiimates the reservoir
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storage capacity ol high demand levels, whereas, on the other hand PMABB model over
predicts the reservoir storage capacity at lower demand levels.

Table 3.7: Comparison of Prediction of Reservoir Storage Capacity — Akkihebbal

Diemand Hist. hean Symthetic Capacity Relative Bias Relative RMSE

MMAF) Capecity NN HMBE PMABE  &HN  HMBE  FMABE kNN HMBB  PMABB
i 76,5 TI619 TROT  TINAR D 0013 0001 0068 D032 0089
i3 826,75 B37.99 B§2047 B56.52 40014 008 0036 0100 0034 0129
flh 95135 10043 94476 10192 0055 0008 0071 0145 0066 0164

63 [164.7 12139 11547 12304 0042 0009 0064 0,152 0093 0147
T [385.8 14683 14203 15265 004 0025 40002 0175 0a24 0497
k] IMLT 17798 17424 19003 -0 000K 0000 092 D4 0336
B0 Me.5 21998 21E26 23903 0073 0065 0066 0XIE 0203 0291
R IR355 28112 2BR6Z2 3075 GoMe  -DOL1 0007 D236 D239 0263

b1 #3433 37758 40dd) 418101 031 0069 0037 0315 0305 0299
B3 B455T 56332 63153 62974 Q12T 0022 DD2S Okdd 049 04N

3.5.3.3 Prediction of Drought Characteristics — Bargi dam site:

A discussion on the comparative analysis of the prediction of the critical and the mean
drought charscteristics 15 provided in the following few paragraphs, based on the resuits
presented in Table 3.8,

Tabie 3.8: Comparison of Prediction of entical Drought Charactenstics — Bargi Dam sine
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Maximum Run Length {MARL)

Al higher truncations levels (90%-100% MAF), it is observed that both k-NN and HMBB
overestimate the maximum run length (MARL), whereas PMABB 15 able o give good
prediction. Similarly for imtermediate truncation levels (70%-85% MAF), both k-NN and

HMBE overestimate the MARL, while PMABB provides reasonably good predictions.
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At lower truncation levels (30%-63%), PMABB predicis MARL better than the other

models k-NN and HMBB.

Maximm Eun Stim (MARS)

Al higher truncations levels (90%6-100% MAF), it is observed that k-NN highly
overesiimates the maximum run sum (MARS), whereas both HMBB and PMABB
models slightly overestimates the MARS, All the models reasonably predict well at
intermediate truncation levels (70%-80%4). Al lower truncation levels (50%-65%), both k-
NN and HMBB underestimates MARS, whereas PMABB model gives very pood
prediction.

Mean Run Length iMERL)

All the models are able o preserve the mean run length (MERL) at all truncation levels.

Mean Run Sum (MERS)

At all the truncation levels, the mean ron sum (MERS) is very well preserved by k-NN

model. On the other hand, HMBE slightly underestimates the MERS, while PMABB

slightly overestimates the same.

1.5.3.4 Prexervation of Drought Characteristics — Akkikebbal:
A discussion on the comparative analysis of the prediction of the eritical and the mean
drought characteristics is provided in the following few paragraphs, based on the results

presented in Table 3.9,
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Table 1.9: Comparison of Prediction of eritical Drought Charactenistics - Akkihcbbal
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Meocimum Run Length (MARL)

Al all truncation levels, it is observed that n considerable bias is exhibited by all the three
models. The HMBB model (with L=24) is seen 10 be somewhat better than the other two
madels in the prediction of MARL.

Meximum Run Sum (MARS)

Al higher truncations levels (90%-100% MAF), it is observed that k-NN exhibits less
bins compared with the other two models: However, at lower and intermediate truncation
levels (55%-85%MAF), the k-NN model under predicts MARS much more than HMBB

and PMABB.

Mean Hun Length (MERL)
All the models-are able to preserve the mean run length (MERL) well at all truncation
levels.

Mean Run Sum (MERS)

All the models are able to preserve the mean runm sum (MERS) well at all truncation

levels.
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It iz to be mentioned that in case of both the streamflow examples, the HMBB maodel
requires & block size of 24 months to be used for resampling the residuals in order to
preserve the serial correlations, and te predict the reservoir storage siatistics and the
critical drought characteristics, while the PMABB model shows n  betier
preservation/predichion of these statistics even by using a block size of 4. This, in tumn,
gives rise to a better variety of simulations for the PMABB mode]l compared with the
HMBB model (with a block size of 24 months). On the other hand, in order to achieve
sufficient variety in simulations, if a within-year block size (L < 12 months) is used for
resampling the residuals m case of the HMBB model, significant bias is exhibited in the
preservations of the serial correlations, the state-dependent correlations and the prediction
of the reservoir storage statistics and the critical drought characteristics, thus resulting in

a poor performance of the model. This is not shown here for brevity,

In summuary, these resulis strongly suggest that the PMABB model proposed in this work

is o potential nonparametric method, which is effective in simulating the multi-season

sireamflows.

3.6 SELECTION OF MODEL PARAMETERS

The PMABE method has been found 1o be effective in providing acceptable simulations
for various alternate combinations of block size (L), bandwidth (w) and perturbation
range (p). Choice of inwppropriate parameters could result in either underestimation of
the critical dry spells or overestimation of the wet spells at certain truncations levels. Ifa
smaller value of L is sclected, the PMABB would be ineffective in reproducing higher

lag within-year serial correlations and cross-vear serial correlations. Conseguently, the



maodlel cannot capture the historical wend of critical run length. Preservation of these
correlations would be of interest to the mmvestigator especially when the dependence
structure underlying the hydrologic process is strong. From the various streamflow
examples tred out in this research work (although only two are presented in this report),
it iz found that a reasonable block sizeof L=4 or L = 6 would be sufficient to reproduce
the within-vear and the cross-year dependence so that the ¢ritical drought characternstics
and the storage statistics are modeled efficienily. It s worth mentioning that a much
longer block size (more than 12 months), may result in repeating the observed patterns,
thus reducing the chance of simulating innovative patterns. Hence, caution has to be

exercised in opting for a long block size.

The bandwidth w has a direct effect on the variety obtained in simulations, A large
value for w implies resampling from a larger domain of nearest neighbors, which would
enhance the possibility of simulating innovative patterns. However, with a larger w, there
is » chance of resampling more distant neighboring blocks and as a result the historical
dependence structure may not be well preserved in simulations. Consequently, the model
would not be able to capture complex trends and jumps in the eritical run length. Thus,
selecting the combination of L and w together is important from the point of reducing the
hias in simulafions, while ensuring suflicien! variely as well as variability in the synthetic

simulations.

Increase in the manpe of perturbation, p{l-8, 1+8], while enhancing smoothing and
extrapolation in simulations,may olso increase the bias in simulating the historical

dependence structure and other important ststistics of concern. Consequently, the
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validation performance of the model, measured in terms of prediction of storage and run
characteristics, drops (not shown herein for brevity). It is suggested that with a sample
size N of 50 1o 200 years, the choice of & could be vaned from 0 to 0.15. Visual
comparison of simulated attributes (summary statistics, dependence structure elc.) with
historical sample attributes could be tried for various combinations of the parameters L, w
and p to choose the near-optimal set of parameters that would result in the most
acceptable stochastic simulation of the observed streamflow data for the desired practical
use. Although this research study considers only equally sized within-year blocks, it is
possible 1o adopt unequal (variable) within-year block sizes. Future research can focus
towards formulating appropriate optimization models that can help in automating the

selection of these parameters.

3.7 SUMMARY AND CONCLUSIONS

A new nonparametric method of conditional bootstrap is presented for simulating
multiseason hydrologie time senies. U resamples non-overlapping within-year blocks of
hydrologic data (formed from the observed time series) using the rank matching rule of
Caristein ef al. [1998]. This algonithm searches the historical record to find neighbouring
blocks whose ends closely match the end clement of the current block and subsequently
resamples their successor blocks. The resampled blocks are perturbed using a weighted
smoathing strategy with a window size of 12 months to achieve smoothing and

extrapolation in simulations.

The propesed method, termed perturbed matched-block bootstrap (PMABRB), is shown o

be efficient in reproducing a wide variety of statistical attributes for both hypothetical and
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real data sets. The venification and validation results presented here support PMABB asa
plausibly better alternative to the non-parametric method “k-nearest neighbour bootstrap
of Lall and Sharma (1996)" and the more recently proposed hybrid periodic model
HMBE of Srinivas and Srinivasan [2001a.b] in simulating periodic streamnflows. 1t is
belicved that PMABB can provide a rather flexible and adaptive method for simulating
time series at finer time scales (e.g., weekly, daily and hourly), where there is
progressively more structure o exploit

The method provides simulations that are efficient in reproducing summary statistics,
tependence structure and the salient features of the marginal distnbution, without
compromising on smoothing, extrapolation and varicty in simulations, so that betier
prediction of storage capacity and critical run characteristics Tor water resources design

15 achieved,
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CHAPTER 4

PERFORMANCE OF WATER SUPPLY RESERVOIR SYSTEMS

4.1 INTRODUCTION

The storage-yield relationship has been the conventional ool used by water resources
engincers to determine the required storage capacity of a reservoir to deliver a specified
targel yield. The most commonly used sequential procedure for determining the storage-
yield refationship has been the mass curve method proposed by Rippl (1883), which
assumes that both inflows and demand are known functions of time. In this method, the
minimum storage that is required to provide the target yield with absolutely no water
shortages over the historical period would be determined graphically, An automated
version of the mass curve method is the sequent peak algorithm (Thomas and Burden,
1963), In this procedure, double cycling takes care of the case when critical sequence of
flows occurs at the end of the strcamflow record, Fiering (1967) has identified the
principal shoreomings of using historical flow record in conjunction with the mass curve
or the sequent peak algorithm. The classical "safe yield estimate" is simply a single
estimate of the yield that could be sustained by the system during the worst drought on
record. Almost certainly, a more severe drought will occur, in future, but the traditional
safe yield analysis does not provide any estimate of risk, thus the estimate cannot be
really considered "safe yield®. Thus, any single value of the sale yield should always be
sccompanied by a clear account of its statistical significance to avoid potential surprises.
Vogel (1985) and Vopel and Stedinger (1988) have shown that by using stochastic

sireamilow models, the precision of storage capacity estimates can be improved



drastically, compared to single historical flow based estimates. They have shown this to

be valid, even il the correet model 18 not identified.

4.2 OVER-YEAR AND WITHIN-YEAR RESERVOIR SYSTEMS

Based on storage capacity, inflow pattern and demand, the reservoir systems can be
classified as over-year (or carry-over) and within-year systems, Within-year sysiems are
sensitive to seasonal varigtions of both inflow and draft. Studies that model the within-
year Storage-Reliability-Yield (S-R-Y) relationships are more realistic. However, these
relationships are difficult 1o generalize due to the large number of parameters associated
with periodic stochastic streamflow models. Hence, a case-wise study is required 1o
obtain 5-R-Y relationships for within-vear reservoirs, The failure duration of a within-
year system is generally less than a year whereas for over-year reservoir systems, il is
more than a year. Reservoirs, in which filling and emptying phases do not take place on
an annual basis, but over a number of years, are known as over-year reservoirs, in which
over-year storage effects predominate, For the purpose of planning such owver-year
reservoirs, stochastically generaied annual streamflows are 1o be considered and not
periodic streamflows, since the periodic stochastic models will not be able to preserve the
year 1o year histonical correlations, when aggregated. Whenever severe, long-stretched
deficits (shortages) in water supply are to be handled in a river sysiem, carry-over
storages become important and high storage capacities are provided for the reservoirs in
such systems. Most reservorr systems exhibil combination of both, over-year and within-

vear behaviours,
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A non-dimensional parameter known as “standardized net inflow” (m) mtroduced by
Hazen (1914) and used by Hurst (1951, 1963} is very useful in identifying if the over-
year effects are predominant for a given reservoir. This parameter is also called as
resilience index. The same was farther adopted in the analytic investigations of Gomide
(1975}, Troutman (1978) and Pegram et al. {1980) and in the Monte-Catlo investigations
of the S-R-Y relationships of Perrens and Howell (1972), Bayazit (1982), Vogel and

Stedinger (1987} and Vogel et al. (1995). The expression for m is given by:

m={|—ﬂ}§—= (4.1)

wherein C,, is the coefficient of variation of inflows, D is the target vield (expressed as %
of Meen Annual Flow (MAF)), u is the mean and o is the standard deviation of annual
streamflows. Here, m is referred 1o as the standardized net inflow, since the mean net
inflow, (g - p D} is standardized by the scale parameter o of the inflows (Vogsl and
Stedinger, 1987). Vogel and Bolognese (19935) termed 'm' as the resilience index since it
indicates the potential of the system to refill once emptied. For over-year storage systems,
usually, m lies between 0 and 1, indicating low resilience {(Vogel and Stedinger, 1987).
Subsequently, Montaseri, Adeloye (199%) attempted to incorporate other characteristics

in equation (1) for discriminating between within-year and over-year reservoir systems.
A higher value of C, requires higher capacity to meet a given target yield. For instance,

for a river with C, of annual streamflows in the order of 0,10, even a high target yield of

about W%-95% MAF, will not be critical and hence may not require large capacities 1o
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be built. But for a river with C, of annual streamflows in the order o 0.5 - 0.7, the same
target yield would be highly critical and will require large siorage capacities to be built, if
long andfor severe deficits and their number of occurrences are to be minimized.
However, the upper limit of the sterage capacity of such reservoirs would very much
depend on the incremental improvement in the desired performance and consequently the

marginal increase in the benefit-cost ratio of the project.

4.3 STORAGE-FERFORMANCE-YIELD (5-P-Y) RELATIONSHIPS

The operutional performance of a water supply reservoir is usually expressed in terms of
performance indicators that describe the failure characteristics, namely the frequency, the
duration and the severity of failures. That iz, reliability, resilience and vulnersbility
together characterize "risk" in the reservoir planning and operation context. A chear
understanding of how unpleasant the periods of unsatisfactory performance may be, will
aid in better planning decisions (Hashimoto el al., 1982), Even though relability is the
mast commonly used measure of performance in reservoir planning and operation, it is
only indicative of the frequency of the deficit (shortfall) and not the continuity of deficits
or the consequence. Resilience is nothing but the ability of a sysiem to recover from
failure and get back to normalcy within a specified interval of time, It is to be noted that
the question of resilience does not anse as far o5 failure is not experienced. Further, éven
when the probability of failure is small, the possible consequences of the failure are to be
taken care of. When the system is able to perform to a reasonable level of reliability, it
will be wiser to reduce the severity of failure (vulnerability) rather than attempting to

marginally increase the reliability. The definition of vulnerability proposed by Hashimoto



et al, (1982) states vulnerability as the average of the maximum deficits that oceur ineach
run of failures within an operating horizon. IT the loss function is convex in nature, this
definition may mislead (Datta and Burges, 1984). Moy et al. (1986) in their work defined
vulnerability as the magnitude of the largest deficit during the period of opesation, and
the same is used in this study also, Srinivasan et al. (1999) improved the resiliency

indicator used by Moy et al. {1986).

All over the globe, while more and more surface water supply sites are being pressed into
service, target yields have been continuously increasing, at both the existing and the
proposed sites. Quite often, increased demands are being met by efficien! management
and utilization of existing reservoir systems, rather than by adding on new systems (or
facilities). Thus, whether new facilities are envisaged or the existing reservoir system is
to be operated more efficiently, it is essentinl o construct the 5-R-Y relationships for any
reservoir system ( Vogel, 1987), considenng the uncertainty in the natural inflows into the
reservoir. Often, this is done either by the no-fallure capacity approach that uses a
sequent penk algorithm coupled with a stochastic streamflow model (Vogel, 1985; Vogel
and Stedinger, 1987), or by the behavior analysis method (Pretto et al, 1997), The
sequent peak algorithm does not allow failures, This method is used with large number of
stochastically generated inflow sequences and the resulting storages are ranked and the
reliability s estimated. On the other hand, for finding the reliability of a single purpose,
single reservoir, sequent peak algonthm may be a convenient tool, but it is not possible 1o
use the same Tor finding the recovery potential or the volnerability of even a single
purpose, single reserveir. This is because, by using this algorithm, only non-failure

capacity estimates can be obtained, for each streamflow sequence routed through the
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reservoir, Further, for wse in multireservoir andfor multipurpose systems, this technigue
may not be suitable, All these flaws are overcome by using a behaviour analysis based on
slochastic reservoir simulation model (Pretto et al, 1997), in which the streamflow
sequences generated from an appropriate stochastic model are routed through the
reservoir using an operating policy (such as a standard operating policy), and the
complete information regarding failure characteristics is obtained. In this method, the
gencrated sequences will be long enough to ensure steady state performance. Hence, for
the descriptive assessment of storage performance on the storage-yield plane of the
reservoir, it would be more appropriaie to use the behaviowr analysis method, so that
more comprehensive information regarding the dynamic performance of a reservoir

system can be obtained,

The Storage-Performance-Yield (5-P-Y) relationships are useful in: (i) gaiming an
undersianding of the variation of reservoir performance indicators namely, reliability,
resilience, and vulnerability on the storage-vield plane; (i) identifying the sensitive
manges of storage capacity of the over-year reservoirs, with regard to performance
charactenstics; and (iii) sclecting between capacity expansion and demand management

options, in case of deficit water supply systems.

McMahon and Mein (1986), Klemes (1987), Vopel and Stedinger (1987), Phatarford
(1989), Vopel and Bolognese (1995) and Vogel and McMahon (1996) provide reviews of
literature relating to the development of peneral 5-R-Y relationships. In the last few

decades, guite a number of researchers have used stochastic streamflow models in
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conjunction with sequent peak algorithm (either single-cycling or double-cycling) to
obtain the 5-R-Y relationships. Fiering (1963, 1965, 1967) generated 200 synthetic
sequences of gamma and normally distriboted annual streamflows from a first order
autoregressive (AR(1)) model and analyzed the same by the double-cycling sequent peak
algorithm. Burges and Linsley (1971) generated the complete probability density function
of over-year storage capecity, using single-cycling sequent peak algorithm, assuming the
annual streami{lows to be normally distributed and to follow o AR(1) model. They

suggested that 1000 streamflow sequences would be required 1o specify the probability

distribution function of storage capacity.

Perrens and Howell (1972) developed generalized S-R-Y relationships in graphical form
when annual streamflows are assumed to be normally distributed ond to follow a AR{1)
model. They used an algorithm, which allows failures and computes the relinbility based
on the number of times failure did not occur. Gomide (1975) derived the probability
distribution function of storage capacity and its mean amd presented the resulls
grephically for full regulation, and planning period ranging from 0 o 100 years, using the
single-cycling sequent peak algorithm, for the case when annual streamflows follow a
AR{1) model. He also presented the probability distribution function of storage capacity
and its mean and standard deviation for different partial regulations of the reservoir for
planning periods, which range from 0 10 30 years. Troutman {1978) derived the mean and
the variance of the asymptotic distribution of sterage capacity for the case of full

regulation, when inflows are described by an AR(1) lognormal model.
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Bayazit {1982} provided disgrams to determine the mean and standard devintion of the
deficit for the cases of full and partial regulation. Vogel {(1985) developed approximate
but general S-R-Y relationships using both single and double-cycling sequent peak
algorithm for normally distributed annual inflows and subsequently, Vogel and Stedinger
(1987) developed the relationships for annual inflows characterized by a two-parameter
lognormal distribution and frst-order Markov process. They used Monte-Carlo
simulation and double-cveling sequent peak algorithm. Klemes (1969) emploved a s-state
(s number of discrete states) Markov chain model in an effort 1o deseribe the complex
structure of sequences of reservoir surplases and failures. Vogel (1987) found that & two-
state Markoy model gave a satisfactory representation of the complex structure of
sequences of within-year surpluses and fallures and later Vogel and Bolognese (1995)
showed that a two-state Markov model can accurately represent over-year reservoir

systems also.

Buchberper and Maidment (1989) defined the index P, analopous to the Peclet number

used to measure the relative importance of convection and diffusion processes, as

&
Puedil 4.2

fior the purpose of determining when a storage reservoir of finite capacity behaves as one
with a semi-infinite capacity, They show that finite reservoirs with P < -1 or P > | behave
as if they have no top or bottom respectively. In this equation, g is mean annual inflow,
C is the capacity of the reservoir and o' is the variance of annual inflow. Based on
Markov diffusion process, they presented an analytic method for approximating the

equlibirium probability distnbution of storage in a finite reservoir. Their analysis was
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sobject 1o inflows and outflows which during a unil time interval produce potential
storage displacements that are independent and identically distributed with & Gaussian

distribution. Yogel and Bolognese (1995} show that

rg 1"
= {1 - .
p = q{ ]_q] (4.3)

where p = probubility for failure-free operation over sn N-year planning period; g =
steady-state probability of a failure; and r = system resilience estimated. Equation (3),
which iz based on two-state Markov model of reservoir system states, provides a very
good approximation to the relationship between p and g as long as the resilience mdex
{equation 1), m, is greater than 0.2, Vogel et al, {1995} combined analytic storage model
with the regional model of annual streamflows, resulting in general relations among
storage, reliability, resilience and yield (5-R-Rs-Y) in the Northeastern United States.
Vogel and MeMahon (1996) derived approximate 5-R-Rs-Y relationships for over-vear
witer supply systems fed by autoregressive lag-one Gamma and normal inflows, They
hive shown that the resilience of an over-year water supply system 15 gencrally

independent of its steady-state reliability.

Pretto et. al. (1997) have shown that a sequence length of 1000 years or more is required
in order 1o get a stationary value of storage estimate for a given reliability and demand,
They have also mentioned that the S-R-Y relationships are only benchmarks for planning
that allow comparison of alternative plans and systems. However, where planners are

mierested in operation over shorl planning honzons, the length of planning horizon of
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interest will dictate the length of inflow sequence which should be osed in conjunction
with the appropriate initial reservoir volume. Srinivasan and Philipose (1998) have
investipated the effect of single phase hedging on the performance of over-year reservoirs
using behaviour analysis snd have constructed tade-off relationships among the
performance indicators, reliability, resilience, vulnerability and average deficit. Philipose
and Srinivasan (1997) have constructed Storage-Performance-Yield (5-P-Y) relutionships

in the form of isolines for a within-year reservoir system in southem India.

Weeraratne et al. (1986) emploved rehability, resilience and vulnerability measures
evaluate reservoir release policies for low flow sugmentation. Moy et al. (1986)
investigated the trade-off between reliability, resilience and vulrerability for a water
supply reservoir using multiobjective pregramming model. Burn et al. (1991) formulated
a multiohjective compromise-progrumming model for real-time reservoir operation
representing reliability, resilience and vulnerability as performance criteria. Simonovic
(1992) formulated o simulation-optimization model with reliability and vulnerability
constraints for finding the minimum required copacity. The formulation of Moy et al
{1986) was improved for more complete representation of resilience by Srinivasan et al.
(1999), Introducing constramts, which describe reservoir performance explicitly into the
optimization, would have to deal with a large number of integer varables (depending on
the number of time periods considered). For such problems, the formulation is of mixed
integer type, and this would require enormous compater time. Building resilience into the
maodel requires tracking of the number of crossovers from failure to success, and this

makes the formulation much more complex (Srinivasan et al., 1999). Though many
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attempts have been done 1o generalize the S-R-Y relationships of over-year systems,
except the works of Vogel and Bolognese (1993), Vogel and MeMahon (1996), there has
not been significani attempts to gencralize Storage-Performance-Yield (S-P-Y)

relationships of over-year systems, which consider also resilience and the vulnerability.

4.4 PROPOSED STUDY

In this chapter, it is proposed 1o investigate the S-P-Y relationships of both over-year and
within-year reservoir systems. While the first part of the study deals with the construction
of general 5-P-Y relationships and a S-P-Y database for use in over-year water supply
reservoir planning and design applications, the second part involves the construction of
S5-P-Y relationships for o specific within-vear reservoir, namely, Dharoi reservoir on

Sabramathi river system in India.

The over-year system peneralization considers the commonly used performance
mdicators, namely, reliability, resilience and vulperability, Modulanzed annual
streamflows generated from AR(]) model are used for the evaluation of the performance
indicators. In most cases, for modeling annual streamflows, the assumption of AR(l)
model with lognormal distribution would be sufficient. Either models with higher order
dependence or more complex 3-parameter lognormal or gamma distributions may not be
necessary o describe annual streamflows. The approach followed in this study is
“behaviour analysis based on stochastic simulation”™, which allows failures and expliciily
tracks the failure characteristics during the period of the long-run reservoir simulation,

That is, the system relinbility is expressed as a steady state probubility. The S-P-Y
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database comstructed would serve s usefu] screening level reference information for

reservoir planners and decision-makers dealing with over-year water supply reservoirs.

The within-year reservoir performance study is carried out for the Dharoi reservoir on the
river Sabramathi in India, considering the performance indicators, mamely, volume
reliahility, occurrence reliability, resilience, period wvulnerability, event wvulnerability,
mean period deficit and mean event defieit These seven indicators are defined in a later
section of this chapter. The reservoir storage performance indicators are evaluated using a
long synthetic sequence generated, which is similar to the historical flows recorded at the
site of interest. The three alternative penodie stochastic models (deseribed in Chapter 3),
namely, k-NMN, HMBB and PMABB have been considered for the purpose of generating
the long sequence of monthly streamflows. A senes of 5-P-Y plots are proposed to be
developed for the Dharoi reservoir using all the three stochastic models and a comparison
would be presented. Also, o briel discussion of the usefulness of these plots would he

provided.

4.5 5-P-Y RELATIONSHIPS FOR OVER-YEAR RESERVOIR SYSTEMS

4.5.1 MONTE-CARLO SIMULATION EXPERIMENTS

In this study, detailed information regarding reservoir performance on the storuge-yield
plane is obfmined based on exhaustive number of Monte-Carlo simulation experiments,
assuming the modular anmual streamflows o be lognommally distributed (LN-2) and
having a AR{1) dependence structure. For the Monte-Carlo simulation experiments, 13

cases of coefficient of varation (Cy = 0.1, 0.15, 0.2, 025, ..., 0.7)and 11 cases of lag-one
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auto-correlation coefficient (py = 0.0, 0.05, 0.1, 0.15, 0.2,...,0,5) of flows are considered.

This selection of inflow parameters is based on the real world ranges of these parameters
of rivers, at a global level. A swdy of annual streamflow data from |40 gauging stations
around the world (Yevievich, 1964), with records of at least 17 yvears indicates that py
vislues for most of the rivers are found 1o be less than 0.40, Similarly, from a study of 106
basins in Mew England. Vicens et al. (1975) found the mean and the standard deviation of
estimates of py 0 be 0.22 and 0.14 respectively. Hence, a reasonable range of py for

these Monte-Carlo experiments has been taken as 0.0 1o 0.50, which includes most cases
of practical interest. Values of m {standardized net inflow) range from 0.1 to 1.0, which
include most over-year storage problems of interest, which correspond to demand levels
in the range of 99-30% for values of Cy from 0,10 to 0.70. The storage-yield plane is
characterized by the combinations of storage capacities in the range 0.3-5.0 MAF (af an
interval of 0.1 MAF) and a number of cases of mrget yield {covering the over-year range
of m= 0.1, 0.2...,1.0}. Thus, in all, the total number of combinations of independent
vanables amounts to B0784 (Table 1). The stepwise procedure followed for obtaining the

S5-P-Y information is given in the following section.
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Table 4.1. Combinations of Parameters Used for Monte-Carlo Simulation

Coefficient Correlation Yield Storage Mumber of
of Variation Coefficient (M Capacity (K)  Combinations
() (P1) (MAF) (MAF)

(1) (2) (3 (4) (5)
.10 0.0 -0.50 0.90 - 1.00 (.30 - 5.00 SB08
(0.05) (0.010) (0.01)

0.15 0.0+ 0.50 085 - 1.00 0.30-5.00 SEOB
{0.05) (0.015) (0.01)

(.20 0.0 - 0.50 .80 - 100 (.30 - 5.00 JB08
(0.05) (0.020) (0.01)

0,25 (2.0 - 0.50 0.75 - 1.00 (.30 - 5,00 5808
(0.05) (0.025) (0.01)

0.30 0.0 - (.50 0.70 - 1.00 0.30 - 5.00 3808
[0.05) (0.030) {0.01)

0.35 0.0 - 0.50 0.65- 1.00 0.30) - 5.00 5808
{003} (0.035) (001 )

(.40 0.0 - 0.530 0.60 - 1.00 0.30 - 5.00 5808
(0.05) (0.040) (0.01)

0.45 (.0 - 050 .55 - 1.00 0,30 - 5.0 SROR
{0.05) {0.045) (0.01)

(.50 0.0-0.50 0.50 - 1.00 (.50 - 5.00 SRO8
(0.05) (0.050) (0.01)

(.55 0.0-0.50 (.45 - 1.00 (.30 - 5.00 6336
{{.05) (0.050) {0.01)
ih. 60 0.0 - 0.50 0.40 - 1.00 0.30 - 5.00 64
((.05) ({0500 (001
0.65 0.0 = 0,50 0.35-1.00 030 = 5.00 39
(0.05) (0, 050) (0.01)

0,70 (.0 - .50 0,30 - 1.00 030 - 5.4 7920
(0.05) (0.050) {0.01)

Total number of combinations 20784

Mote: Valoes within parentheses indicate the interval in the respective range of the
parameter.

4.5.1.1 Sicpwise Procedure for Obtaining the 5-P-Y Information

Following are the seguential steps camied owt in this study 1o oblain the storage
performance-yield (5-P-Y) information for over-year reservoir systems:

I. For a particular combination of coefficiemt of wvariation (C,) and lag-one

amocorrelation  coefficient (1) of annual streamflows, lognormally distributed
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e

modular annual streamflows with AR(1) dependence structare of length = (N*1000)
are gencrated.

The modular annual streamflows generated are divided into 10 sequences, each N
year in length, in sequential order. It 1s to be noted that the length N 15 taken such that
the average performance indicators computed over 1000 sequences are not affected
by the initial storage condition at the beginning of the simulation, and the average
performance indicators reach a steady state.

The generated modular annual streamflows are routed through the reservoir using
stendard operating policy for different combinations of active storage capacity (K)
and target vield (1)) considered. The combinations of K and D describe the reservair
storage-yield plane of interest.

The mean reliability, the mean resilience and the mean vulnerability along with their
respective  standard  deviations (over 1000 sequences), are computed for all
combinations of active storage capacity and target vield considered. Now the S-P-Y

mformation 15 available for the particular combination of C, and py considered.

The steps 1 to 4 are repeated o obtain the performance information for all the

combinations of C, and p| considered.

This entire 5-P-Y information oblained is stored in a database, which will be useful in

construction of performance relationships and performance analysis on the storage yield-

plane. For the long-run Monte-Carlo simulation referred, a simulation length (N) of 1000

years was found o be sufficient for the mean performance indicators, namely, reliability

and resilience to reach a steady state, while a simulation length of approximately 10000
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years was regquired to obtain the mean vulnerability over 1000 sequences. Hence,

N=10000 years is adopted for the long-run stochastic reservoir simulation in this paper.

4.5.1.2 Generation of Modular Annual Streamflows
The annual streamflows are ofien lognormally distributed and have a single order of
dependence. This means that a AR{1) model would be sufficient to model the annual

streamflows, If the annual stresmflows measured are given by €, then the modular
annual streamflows will be given as ¥; = Q; / Q, where Q is the mean annual flow
(MAF), This modular form of the annual sireamflows is used in the Monte-Carlo
simulation for performance study, Once C, and py of Y; are assumed, the corresponding
modular flows can be generated, The log-transformed modular annual streamflows (X; )

following a AR{1) model may be written as:

X = ity + oKX, - wy e L= p b, (4.4)

in which €; are independent normal disturbances with mean zero and variance unity, and

T I‘JZ,; and p;(x) are the mean, the variance and the lag-one correlation of the log-
transformed modular streamflows (X;). The relationships between the statistics of the
historical data (u,, o, 0(v)). and the statistics of the transformed sequence (jiy, oy,
plm}}. as given by Matalas {1967) have been used in this study to estimate ply, Oy, pt{'ﬂ'].

Onece these transformed paramelers are obtained, they can be substituled into equation
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(4.4) to obtmin the penerated values (X;). Then, these penerated values (X)) are

exponentiated to get the generated modular streamflows (Y;).

4.52 RESULTS AND DISCUSSION

4.5. 2.1 Srorage-Performance-Yield (§5-P-Y) Relatipnships

[t is t be noted that the Storape-Performance-Yield (S-P-Y) relationships are obtained
from the results of the Monte-Carlo simulation, assuming the Standard Operating Policy
(SOF). In this section, two of the tvpical sets of 5-P-Y relationships are presented in
Figures 4.1 - 4.6. The Figures 4.1 - 4.3 comrespond 1o the 5-P-Y relationships for py =
0.30 and Cy = 0.50; and the Figures 4.4 - 4.6 correspond to the same for p; = 0.30and C,
= {1.70. For the purpose of constructing the storage-yield plane shown in Figures 4.1 - 4.6,

a wide mnge of storage capacities (0.3-3.0 MAF) and tarpet yields are considered.

4,5.2.2 Storage-Reliability-Yield (S-R-¥) Relationships

5-R-Y reladonships are the most commonly discussed performance relationships in
reservolr problems, These relationships provide the primary information regarding the
reservolr performance. Tt is seen from Figurés 4.1 and 4.4 that reliability drops
significantly with increase in yield for a given storage capacity, Cy and py of the inflows.
This drop is found to be mere for flows with higher C, (Figures 4.1 and 4.4), which is
only extpected. The change m the slope of the S-R-Y relationship provides valuable
information for reservoir planners and designers, in terms of identifying the sensitive
ranges of storage capacity. It may be seen from Figures 4.1 and 4 4 that as the target yield

increases, the storage capacity at which the S-R-Y curve becomes horizontal, also
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increases. However, for higher target vields (>=0.90 MAF), the S-R-Y curve does not
become horizontal even at a storage capacity of 5.0 MAF.

For water supply reservoirs, the desimable range of reliability 1= 0.95-0.99 (Vogel and
McMahon, 1996). The ranges of minimum capacity required to achieve this range of
reliability are extracted from the 3-P-Y database and are presented in Tables 4.2 - 4.7 for
various yields and six different combinations of py and C, of the inflows. The ranges of
the other two performance indicators corresponding to the ranges of the storage capacitics
referred above are also given in Tables 4.2 — 4.7, Tt may be noted from Tables 4.2 - 4.7
that in case of low target yields, if the reliability obtained corresponding 1o the minimum
storage considered (0.3 MAF) itself would be greater than 0.95, then the actual value of
reliability is entered. Likewise, in the case of high target yields, if the reliability obtained
for the upper limit of the storage capacity considered (5.0 MAF) is less than .99, then
the setual value of reliability is reported. The performance information presented in

Tables 4.2 — 4.7 wall be quite useful at the planning level for water resources decision

making.

Table 4.2, Capacity requirement and performances in good reliability range for py=3 and C, =3
Yiekl D Relinbility Min Capaicity Ezsilience Vulnerability Ave, Defich
(MAF) K (MAF) (MAF}

1.00 09500 =50 = .
0,.9900 =50 - - -
097 .55 3.0 03617 {6050 01850
0.5792 50 0.3581 0.3717 0.1897
0 05524 1.5 03537 05734 0.1 764
09854 az 0. 3956 0.5099 0.1764
081 Q9522 1.3 04220 05470 0.1627
1.9%01 1.3 0.4246 04811 0. 1626
058 0.94509 0.8 4561 05251 1498
(8905 1.8 L4632 0.45%1 0.1503
.83 09539 7 LLE L) e 455 0.1385
0.9897 1.3 {14954 04382 i}, 1380
(B2 03504 05 05265 4655 0.1268
0, 9902 1.0 10,5339 i 144 1279
s 0.8581 0.4 0.5667 4398 01158
0.5 2 0y 15673 L1856 1164
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076 0.9563 0.3 06021 04138 1044

_ 00,9840 0,5 0.6019 0,3837 01057

RE] 0.9733 0.3 056418 0.3736 0.0953
0.9921 1.5 0.6358 10,3355 00954

0.70 {19857 0.3 0.6783 0.3319 0.0868

Table 4.3. Capacity requirement and performances in good reliability range for p, = 0.3 and C, =0.5

Yield D Rebinbility Min Capaetty Resilience Vulnerability Ave. Deficit
[(MAF) K (MAF) (MAF)
1.00 09500 =5.0 - - -
0. S =41 - - -
04as 0. %400 =50 z * -
01,9900 =30 = - =
0,50 0,5496 30 0. 3661 0. 7087 02508
0.98534 20 034632 06700 L2505
0.&5 0.9518 20 0. 06591 (L2261
0.9895 3.7 0.4004 0.6041 02257
0.30 0.9476 1.3 0.4354 0.6170 02019
0 oE0S 25 ﬂ.HlE_ 0.5597 02016
075 (.54 il g 04738 (5608 01795
] 1.8 4852 05122 01787
0.7 0.5449 0.4 (5061 {5246 01575
0811 Ia 5236 45644 0.1590
0.65 09438 04 0. 566 0475 01377
{94902 0.4 05669 04321 01382
0,60 0.0512 0.3 (0.5 042835 013
0.9§82 0.6 06101 0.3%23 e
0.55 0.8763 0.3 06455 L3662 3. 1)
LaET3 4 06409 10,3393 R L1] b
[T 0.59 <f).3 - . -
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Table 4.4, Copacily requirement and performanees in a good relinbility range for py= L3 and C, =

0T
Yield D Relinbility  Min Capacity  Resihience  Vulnerability  Ave, Deficil
(MAF) K (MAF) (MAF)
100 0.0500 =50 = : .
09900 >5.0 : : :
.85 0.9500 =50 - : .
0.9900 5.0 3 3 :
1.90 0.9500 =50 . - .
0.9900 >80 - : -
085 0.9500 X 0.3454 0.7443 0.2950
0.0724 5.0 0.3432 0.7300 0.2946
0.80 00315 27 03728 6942 02679
0.9858 50 03738 11,6500 0.2667
0.7 05403 (] 13004 0.6480 0.2418
0.990] 36 0.4025 0.6015 0,2406
0.0 0.9508 14 04310 0.6003 02166
0.9900 26 04402 05566 0.2159
065 11,9495 1.0 04627 03528 01923
0.9899 1.9 0.4734 0.5107 01918
.60 0.9476 0.7 0.49%9 0.5060 01687
0.9900 1.4 0.5062 04542 01654
0,55 00439 0.5 0Sd12 04576 0.1050
0.9854 1.0 0.5463 0.4255 0.1478
0.50 0.9607 0.4 05870 0.4051 0.1263
[.98ES 0.7 04882 03814 0,1258
0.45 0.9677 %] 06301 0.3553 0.1057
DD 0.5 06257 0.334] 0.1042
0.40 09860 0.3 06795 02934 0.08%4
0.35 0,990 Tk . = >
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Table 45. Capacily reqeirement and performances in good refiahility range for p, = 0.5 and C, = 0.3

Yield D Relinbility Min Capacity Resilience Vulnerbility  Ave. Delen
{MAF) K {(MAF) (MAF)
1.00 0.9500 =50 = - =
{1.9900 =5.0 - . .
097 (. 9da7 &6 02758 Daiis .2039
0.935% 50 02744 06068 02042
0.0 0.9406 23 02984 05841 01965
09842 54 {2040 05373 0, 1906
T 0.9408 1.9 0.3247 0 5587 0.1782
0, 9559 19 0.3257 i 4935 01775
0,88 0.9526 14 0.3493 0.5316 0.1656
09892 27 03471 04758 01650
L85 09515 1.0 0.3740 05109 D.1537
(L9595 20 ,3783 0.4522 01530
[X7] 1.9488 07 0.4041 04857 0.1423
0.98096 1.5 {1, 4084 04311 0.1424
0.79 09481 .5 04342 04608 0. 1308
0901 1.2 (4357 0.3001 0.1325
0.7 0,9552 04 46T 0.4313 0.1197
09874 08 04652 {3957 0.1223
.73 0.9586 03 05052 0.403% 01092
0.84913 0.7 0.4995 {3608 0.1132
0.70 0.9743 0.3 0,5385 0.3683 0.1603
.9904 .5 0.5328 03435 0. hoza

Table 4.6. Capacity requirement and performances in pood relinbility range for p,= 0.5 and C, = 0.5

Yield D Heliability Min Capacity Resilience YVulnerability Ave. Defici
(MAF) K (MAF) (MAF)
|0 0.9500 =510 : : -
0.9900 >5.0 . : .
Q.95 09500 =50 . . =
o 0.9900 =541 - - -
(KL 0, B8 4. 2717 07147 02714
0.9561 50 2741 0.7 0.2711
0L.E5 0.9503 3 3024 0667 0.24962
09834 50 03001 01,6311 0.2443
080 08454 2.0 0,335 06228 0.2223
09855 4.0 .3303 .5471 (L2216
075 a3 14 03508 0.5T8G .1998
0.9903 2.8 0.3575 0.5240 01987
0,70 0.9481 0 03918 0.5343 0.1776
0.9 8 1.9 04 {4859 AT
0.65 0.9491 0.6 04291 04887 01361
0.9909 1.4 04317 4380 1572
.60 (L9522 4 0.4728 n4415 0.1352
(19888 0.9 0.4691 D.40)72 01377
.55 09633 0.3 5215 039146 1163
0.9887 0,6 05160 0.3677 0.1189
{50 049524 0.3 0.5658 3340 (. 0GR0
0.9893 0.4 0.5612 0.3228 01006
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Table 4.7. Capavity requirement and performances in pood relishility range for py = 0.5 and €, =07

Yield D ‘Reliability ~ MinCapacity  Resilience  Vulnerability  Awe. Deficil
{MAF}) K {(MAF) (MAT)
1.0 {9500 =40 s z -
{1,550 =30 - ] .
0.8 0.9500 =5.0 . = -
09900 =50 - . .
0.90 {9500 =50 - - -
i 9900 =4 ) . x .
.85 (.2500 =50 - - -
{19900 >5.0 3 . »
0.8 09497 41 02760 07010 0.291%
0.9657 5.0 0.2747 06914 0.2911
0.75 09484 149 0.2904 06527 0.2649
—=r 0.9849 5.0 0.2978 06278 0.2642
0,70 09332 23 0.3227 00,6040 2391
0.5902 43 03219 0.5642 02376
0.65 09492 1.5 0. 3462 0.5594 021
L9896 3.0 03448 05200 0.2127
060 09526 11 {0.3747 0.5121 0.1898
{5900 22 @ 3798 0.4741 0.1878
0.55 09566 .8 0.4060 0.4630 0. 1665
003 1B 04089 {4291 0.1 6632
0.50 0.0317 0.5 04400 0.4175 01428
. 09857 1,1 04351 03574 0. 1454
45 D952 | ] 04857 0.3707 0. 1Z1E3
049912 0.8 04753 0.3422 0.1243
A4 09750 0.3 0.5287 0.3158 0. 1023
0.990] 0.5 0.5228 0.3010 0, 1038
0.33 DYRET 03 0.5741 0.2567 00838
030 {0,550 <013 - e -
G H) =03 , .

4.5.2.3 Storage-Resilience-Yield (S-Rs-Y) Relationships

[t may be observed from the S-Rs-Y relationships (Fig 4.2 and 4.5) that resilience drops
significantly with increase in target yield, and this drop with respect to vield is found to
be less for flews with higher C,. Further, the increase in resilience with increasing storage
capacity, decreases with increase in tarpet yield and eventually becomes insignificant at
high target yields, for both the C.'s considered (for C, = 0.5, p; = 0.3, D > 0.85 MAF: for
Cy=0.7, py = 0.3, D > 0.80 MAF: See Fig 4.2 and 4.5). However, for lower target yields,
there is no significant improvement in resilience at low as well as high storage capacitics

while a significant improvement is noted for the range in between. With increase in target
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yield, this transition range widens and moves towards higher storage capacities and
eventually ending up in flal storage-resilience relationships for high target vields, This
deserves some attention in the planning of water supply svstems, wherein the marginal

benefits due to increase in resilience are considerable.

4.5.2.4 Storage-Vulnerabifity- Yield (8-V-Y) Relationships

It is seen from Figures 4.3 and 4.6 that in general, vulnerability increases with C,.
Furthermore, it is observed that at high targel vields, vulnerability is very high and this
decreases ot a mild rate with increase in storage capacity. On the other hand, at lower
target yields, appreciable reduction in vulnerability is noted in a cerlain range of storage
capacity and this range widens and moves towards higher storage capacities with increase
in farget yield and/or Cy. This can be exploited in certain water supply systems, wherein

the marginal value of damage reduction due to decrease in vulnerability is quite high.

4.5.2.5 5-P-Y Database and the Query-based Program

The results of the Monte-Carlo simulations are stored in a database created uvsing MS
Access, This database contains information regarding the inflow characteristics {py, C5),
reservoir storage capecily and target yield (expressed in terms of the historical mean
snnual flow (MAF)) and the corresponding performances including their standard
deviations over the 1000 replicates. There are 80,784 records in this database, occupying
about 28 MB of space in computer hard disk. To extract information from this database, a
front-end query-based program was developed using Visual Basic, Either single values or

ranges of values can be pre-specified for the input parameters, autocorrelation, coefficient
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of variation of river flow, storage capacity of the reservoir and demand level in the input
form (Fig 4.7). The corresponding mean performance indicators (reliability, resilience,
vulnerability and average deficit) and their standard deviations over 1000 replicates can
be extracted from the S-P-Y database and displayed on the output form (Fig 4.8). This
program also allows the user to specify the desirable performance range, so that the
outpul form will nol display the results falling bevond this specified range of
performance indicators. This helps in avoiding unwanted resulis and enables in directing
the search properly. Furthermore, there is option for sorting the outputs based on the
mean performance indicators and their standard deviations. Sorting can be performed at
two levels. For example, the first level of sorting may be based on reliability and the
second level of sorting may be based on any one of the other indicators (see Fig 4.7). The
number of records displayved on the output form will guide deciding further refinement.
The outputs can be saved in text files (ASCI format) for further processing or for future
reference. It is to be noted that in this study, the performance investigation has been done
using the simple Standard Operating Policy (SOP) (Eq. 4.5).
5+0-C if(8S+0-D)>C
R =<D, FCz(8 +0,-D)=0 (4.5)
S+, otherwise

where 5, is the initial storage, () is the inflow, D is the tarpet demand, R, is the actual
release and C is the active storage capacity of the reservoir. However, such S-P-Y

databases can be constructed for other (hedging/optimal) policies also.
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4.5.2.6 Usefulness of the Performance Database in Decision-making

The over-year reservoir performance database constructed in this study will be useful in:
(i) Planning and design of reservoir storage capacity for a pre-specified target yicld and
desiruble performance indicators and (i) Making decisions reparding capacity expansion
or implementation of demand management programs or a combination of the two for an
existing reservoir systém under operation. However, il i to be mentioned that this
database can yield enly approximate planning level information concerning the functional
performance of an over-year water supply reservoir with regard o meeting a target yield.
This 15 to be used in comjunchion with other kinds of inputs such as economical,
environmental, social, political and legal in order to arrive at a final decision. The two

points mentioned concerning the usefulness of this database are illustrated below,

Consider that the storage capacity of an over-year water supply reservoir is to be fixed for
o target yield of 60% MAF and the streamflows into the reservoir have a C, of 0.7 and p,
of 0.3, A reasonable degree of performance in terms of long-run valees of reliability,
resilience and vulnerahality is expected. Now, the decision-maker can invoke the S-P-Y
database constructed in this study and can obtain the kind of sioruge-performance
information presented below:

For K = 1.0 MAF; Reliability = 0.974; Resilience = 0.503; Vulnerability = 0.492 MAF
For K = 1.5 MAF; Relinbility = 0,992; Resilicnce = 0.508; Vulnerability = 0.456 MAF
For K= 2.0 MAF; Rehability = 0,998; Resilience = 0,523; Vulncrability = 0.406 MAF
For K = 2.5 MAF; Reliability = 0.999; Resilience =0.568; Vulnerability = 0.319 MAF

For K = 3.0 MAF; Reliability = 0.9997, Resilicnce = 0.626; Vulnerability = 0.204 MAF
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A sean of the above information that would be displayed on the output form, supgests
that 1t may be sensible 10 go in for 2 storage capacity (K) in the range of 1.5-2.0 MAF.
Further investigation of the performance indicator resilience, within the selected range of
K. shows that K = 1.9 MAF would be an ideal choice of the reservoir capacity,

For K = 1.9 MAF; Reliability = 0.997; Resilience = 0.519; Vulnerability = 0.417 MAF.

Consider that some years after the construction of an over-year water supply reservoir
with a storage capacity of 1.0 MAF on a river with inflow charactenstics of C, = 0.5 and
p; = 0.5, the demand becomes 0.8 MAF, cutgrowing the initial target vield of 0.70 MAF,
As a result, the long-run reliability is expected to fall from 0.956 to 0878 (7.8%
decrease); the long-run resilience is expected to fall from 0.393 1o 0.329 (6.4% decrease);
the long-run vulnerability is expected to increase from (.532 MAF 1o 0644 MAF (D.112
MAF increase). In this situation, if the onginally intended performance is to be retrieved,
then, it may be necessary to decide among capacity expansion or demand management or
both, Let the maxmum capacity fo which the reservoir can be built at the site be
restricted 0 1.5 MAF from cconomic, environmental and other considerations. If the
existing capacity of 1.0 MAF is increased to 1.5 MAF, then, the long-run mean
performance indicators will be 0.922, 0.329 and 0.636 MAF respectively. On the other
hand, if the demand managemeni option is exercised (0.05 MAF reduction from the
expected demand of 0.80 MAF), then the performance indicators are expected to be
0.922, 0.359 and 0.589 MAF respectively. If both the capacity expansion {from 1.0 MAF

w 1.5 MAF) and demand manapement (0.8 MAF to 0.75 MAF) measures are
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implemented, then the performance indicators will be 0957, 0.360 and 0574
respectively. Thus, il can be seen thal by combining the two measures, reliability is

retrieved to the original value, while the other two indicators suffer marginally.

4.6 STORAGE-PERFORMANCE-YIELD RELATIONSHIPS FOR
WITHIN-YEAR RESERVOIR SYSTEMS

The development of the storage-performance-vield relationships for within-year reservoir
systems cannot be easily generalized since there will be too many parameters involved,
Hence, the relationships are to be developed for a particular reservoir under
congideration. In this study, 1o illustrate the construction and the uwsefulness of such
relationships, the case example chosen is the Dharoi reservoir on the river Sabramathi in
India.
4.6.1 Performance Indicators for Within-year Reservoir Systems
The definitions of the seven reservoir storage performance indicators for use in within-
VEAr TeServoir sysiems are as stated below (equations 4.6 —4.13):
O ccurrence based refiability

M

2.9

i 4.
R T (4.6)

di = duration of the j* fatlure event
M = fotal number of faiture cvents
T = tolal number of periods of operations

Valume based reliability
T
2R,
Ry =5%— 4.7)

2.5

=1

Iy =demand at period
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R, = release at poriod t

T = total rumber of penods of operations
Rexilience
Res= HM
2.4,
it
d; = duration of the | failure event
M = total number of failure events
Period vulnerability

Va=max(D,-R,) t=12..T

(B = demand at period t
R, = release at penod |

Event valnerability
Ve =max|E,E,.......E..E, |

Ei = i{q —EJ =1.2,...M

1 = demand al period i

R = release al period i
B,  =total deficit in j” failure event
d; = duration of the j™ failure event
Mean period deficit

T

$0,-R,
Mﬂm =-‘=1N— t=12....1

Dy  =demand at period t
RB;  =release at period t

N = total number of failure periods
T = total number of periods of operations
Mean event deficil

T

¥Y.0,-R,
mm..&,.ﬁ_

(4.8)

(4.9)

(4.100

(4.11)

(4.12})

(4.13)
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= demand at period t

= release at period

= total number of failure events

= total number of periods of operations

4.6.2 Case Example: The Dharoi Reservoir on the Sabarmathi River

=EZFY

The Sabarmathi rises in the Aravalli hills and hias a length of 300km®. The drainage area
of the river is 21674km” of which 19% lies in Rajasthan and the balance in Gujarat (Fig.
4.9). Its main fributaries arc the Sei from the rght and The Wakul, the Hamav, the
Hathmati and the Watrak on the left. Al Dharoi the nver passes through a gorge and later
after 240km of its course, it passes through Ahmedabad and finally falls into the Gulf of
Cambay. The important tributaries are the Hathmati (1523km?), the Sei (946km”), the

Wakul {1625km®), and the Hamav 972km”) (Source: NIH, 1987).

Fie. 4.9 River Sabarmathi = Dharoi Dam Site (Source: NIH. 19895,
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The historical monthly flow data st Dharoi dam site are presented in Table 4.8 for 41
water years (June 1935- May 1975).

Tahle 4.8: Historical Monthly Streamflow Data — River: Sabramathi; Station: Dharoi dam

site (Source: NIH, 1987).
Yiear Jem Ml Aug Sep Cict Moy Dec Fan Feh e Ape My
EE M7 M N2 20 M &5 Aotel 30 (B .44 (1] R -
iMe 3593 1125 28.00 LR i) 132 (" fLad (14 %] 000 {048 1,00
197 TAR 4133 MAG 13127 TIM 943 s § b 450 141 247 1IN
1298 130m IR SR 1445 a.1K LK L 000 157 n 35 ¥4
[l 109 pac i1 R N T B2 d.|a 341 417 141 312 34l 10 [ &3
IE  Ghal 4224 &40 SR{ 4.7 1.38 {1 01 ] 00 (.0 (%] )
PB4 4921 51362 BARSR SL86  100h LB 1T7 184 247 .00 (.44 138
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10 29 I 1S NI9NTR . X4 353 IE3S 1343 73 3.8 |4 ET
1951 SEl 14383 13040 1589 2% 16T 174 (| ET 010 (1] s
w2 HET 1760 126.M AL 50T 5 5% ERE 479 1 4 57 T 033
1953 559 15.82 0635 WM 4 113 L] i 147 4.4 K1} 1.4
1954 350 AD4AT 13D 64D ISDXE BOS idbi dLah 842 5.0% FRL 112
19Es 210 oSG 33131 BES49  THME JIEs QRGO 1004 194 2.40 iE 0
Mg 7R SISAY GREGE  ZEION S9M mn E3r BT 2w LT SRE 464
1957 662 AT 1w AL a0 11K 145 .44 GES] 136 2% I
{F Le6 K3 a0 GT4r 3004 bl ] Ere 1,87 (Wi n 44 i,
1958 ! Jasd - IRT46  ROSZ2 . GOAS  SOXF MW 1AM 1LEl a0 .24 4,57
e M) 12447 239036 5734 2047 247 35 1m 214 144 HED 036
il 494 11670 TILTE  ETOAN 04D 4507 ISOE W1 1T3s 550 104 131

™32 51 232 BT 1ZEBM 32Ah 1009 W ER V] EN-r ! 1.3 (LB 04K
1963 152 6951 IR1s MOEF 434 5N (AR 1 $43 118 .44 152 s |
e 83 A wim Free 04T I1ES 178 k11 300 215 142 0

1 LS E T P LR E Ef 44 L A L " AL 185 1,33 [ .40 (L83 038

96 4797 1007 MeD AT 23 G40 5% .58 05 {51 fi i 145
L (Ax 35460 IEL?S  EMIE] 47e6  pdeE 1753 T11 443 215 |23 &y

i6E (L35 151 91 ol .55 B 165 210 1.3 I T nu2 158 L]
10 AT 2.3 il 30 43 A0 s [HEe [ @29 185 56 nis Lk ]
7 AR 35 350014 HL4E E21A . 1166 1543 4.57 el 116 158 ]
([} 154 2.5 004 1305 sz 1IkS 1R L3 1122 ol nIe o

2 23S b Gk (LT i1} 063 1511 Gl 51 .34 0.4 ols
1973 AT 4421 FTORS  IO0RAR BOSHI S400 239 1135 A E .44 M hTS
L9 14377 443M  40m LLOS L8 154 Lo 21ed 1471 1402 1.3 T
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The summary statistics namely mean, standard deviation and skewness, of the monthly
flows are presented in Table 4.9,
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Table 4.9: Summary Statistics of Historical Monthly Streamflows — River: Sabramaths;
Station: Dharoi dam sile.

Month Jun Jul Aug Sep i Moy  Dec  Jan  Feb Mar  Apr May

m;} Me4 NBAT 2I5T4 O 292ET 4588 1Z4T 9T 501 409 234 161 142

Standard
Devinibon 3513 29536 I2R.016 41978 73B89 1432 1845 538 501 306 133 147

(Mm")

Skewnoss. 1890 21 | 59 2331 270 L33 492 143 AW 239 245 LT

It may be noted that nearly 87% of the flows are received during the period July to
September (3 months). The coefficient of variation of the flows are above 1.0, for all the
months. The skewness coefficient of the flows is also high in all the months, the highest
being in December (sbout 5). The model parometers for the three periodic stochastic
muodels considered in this study, are tabulated in Table 4.10. While k-NN and PMABB
are non-parametric stochastic models, HMBB is a hybrid stochastic model and hence has
both parametric and non-parametric  components, The periodic AR(1) (PAR(1))
parametric component does the partial pre-whitening that helps in capturing the major
part of the linear shor-term dependence; and the resampling of the resuliing residuals
using a moving block of size L = 24 months, helps in capturing the higher-lag lmear
dependence and a significant part of the non-lineerity if present. Moreover, the moving
block resampling of the residuals enables reproduction of the features of the marginal
distribution, namely, asymmetry and multi-modality. For the k-NN model, the default
choice of dependence order d =1 and the number of nearest neighbors k = n™ (proposed
by Lall and Sharma,1996) are adopted, where n 15 the choice of the sample record. For
the PMABB model, a block size of L = 4 months was found to be sufficient, since the
flow date are resampled using the matched block bootstrap proposed by Carlstein et al.
(1998} which is a method suited for modeling dependent data. The number of elements

considered for the malching exercise is 5 and p is the smoothing parameter that aims 1o
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achieve variahility in the synthetic simulations. The parameters of the three stochastic

models are listed in Table 4.10,

Table 4,10: Parameters of the Stochastic Models

Models
k-NN

HMBB
(a} PAR(]) parameters
from June - May

FMARR

Parameters
a) Depemdence Order, d= 1;

b) No. of neighbours considered for residual

resampling, k = 6.
a) Jun Jul Apg
44612 01023 04553
et Nov Dee
05218 06578 03611
Feb Mir Apr
0.EIIE (. 7450 088045

b} Block size for resampling the residuals,
L =24 months

a) Length of within-year matched block,
L. = 4 months;

b) No. of data points used for rank matching,

wW=3;
¢) smoothing parameter, p = 0.90-1.10.

Sep
{4620
03251

. 7040

The performance of the three stochastic models in terms of reproducing the summary

statistics of the periodic historical flows is presented in Table 4.11, Tt is seen from the

Table 4,11 that:

The k-NN model displays some bias in reproducing the monthly means and the monthly

standard deviations of flows, while the other two models perform slightly better.

All the three models are found to reproduce the skewness present in the historical flows

in all the 12 months.
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Table 4.11; Reproduction of Summary Statistics of Historical Streamflows — River:
Sabramathi; Station: Dharoi dam site,

Jan Jual Aug Sep Ot Meow e Jan Feb Mar Apr  May
Menn (Mur')
Historicsl 2454 23807 22574 79287 4958 1247 %79 501 409 134 161 142
E-HHN* 2319 330.0% 23352 296460 47431 1261 122 478 3B 201 134 148
HMBBE® 3500 24108 23320 2864 474D 1203 B35 4R 397 229 1460 L4
PMABE* 2518 24411 Z231.81 29749 3133 1296 031 533 439 244 166 1.5l

Standard
Deviation (Mm’)

Historical 35.13 29536 22006 41978 T3.B9 1432 1945 538 502 306 233 LAY
k=MM* 3269 3Ind.e6 3061 AI2ED SR 409 2041 505 AT 2467 182 LTS
HMBB* 3302 284.7] 22435 41041 7047 .08 1806 5323 499 188 227 |82
PMABBR* 35326 310290 2019356 40584 7339 1427 1987 544 528 309 233 1RO
Shewness

Hestorcal .20 211 159 223 2.7 492 143 27 239 245 I

E-MN* L.BE 1.946 L.56 203 285
HMBB* Les .06 1.63 224 179
PMABB® 184 208 1,51 L12 272

470 149 301 248 249 16
3.13 |42 2176 239 238 1.7
470 139 264 229 240 166

rikh

The gross storage capacity of the Dharoi reservoir is 908 I!'v.-'lm‘l+ and the live slorage
capacity is 732 Mm® and the Full reservoir Level (FRL) of the dam is 189.59 m, as given
in the weekly report of Bl important reservoirs of India (CWC, Government of India,
2007). The monthly vield factors as reporied i the technical report UM-16 of NIH
(NIH,1987) and the same are presented in Table 4.12. These values have been used in
this study for the purpose of development of the Storage-Performance-Yield (3-P-Y)
relationships.

Table 4.12: Monthly Yield Factors — River: Sabramathi, Dharoi dam site (Source: NIH,

1987).
bl iin lul Asg Sep i Mov e Jnm Fil LAFT] Apd Mhay
Wield o 0 iR fasT el G094 DGE  DOSa Soeld ddMId4 mowE  Ddma
Factex

The reservoir storage performance measures have been computed from the 41-year long

historical flow sequence as well as the 4100-yesr long synthetic fMlow sequences
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generated from the three stochastic streamflow models considered (k-NN, HMBB and
PMABB), for the possible combinations of storage capacity and yield (expressed in % of
Mean Annual Flow) given below:

Storage capacities (Mm'): S00; 600; T00; 732; 800; 900; 1000,

Yield (% MAF) to be supplied by the reservoir: 50, 55, 60,..., 90, 95

A computer program is developed for the reservorr performance computation. The seven
reservoir performance indicators listed in an earlier section, can be computed using this
program for the given reservoir storage capacity, yield, monthly yield factor, historical
flow sequence, synthetic flow sequence and the reservoir operating policy (either
standard operating policy or any hedging policy). A typical output of the simulation
program showing the reservoir balance and the computed values of the reservoir
performance are presented is given in (Appendix [), This output is obtained by routing

the historical flows through the reservoir using standard operating policy.

For brevity, only the salient results are presented and discussed in the following
paragraphs.

The reservoir performance-yicld relationships obtained for the existing reservoir storage
capacity of 732 Mm’, using the historical flow sequence ns well as the three long
synthetic sequences generated from the three periodic stochastic models considered are
presented in Table 4.13
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Table 4.13: Comparison of the Performance-Yield Relations - Historical Vs Synthetic

Flows
Mean Mean
Event Perlod Event Perhod
Yield Vil Vul Deficit Daficit
(%MAF) OBR VBR  Resilience (Mm") (Mm%  (Mm’)  (Mm’)
Hiztorical

0.9695 0.9712 0.2000 245.19 867 17084 3413
D.8451 0.9471 0.1852 32475 4364 20729 38,39
0.9106 0.9252 0.2273 J668.15 47 51 159.78 35.31
0.8760 0.8831 0.1803 411.54 51.58 22473 40.52
08478 0.8674 0.1600 45 G4 55.54 287.73 45.04
0.8171 0.8308 0.1556 490.34 58.51 322 .51 07
0.7886 08032 0.1346 541,74 63.48 400,18 53,87
0.7561 0.7758 0.1417 836.42 6745 389 32 56,87
0.7256 0.7468 0.1556 789.62 .41 05,85 80.04
0.roz2 07188 0.1585 842 96 TH.38 #13.32 B 87

09772 0.9801 0.2422 J6d4 .43 39.66 13021 31.54
0.2564 0.9525 0.2240 538.29 43.53 152.88 34.24
0.8297 0.9396 0.2175 B2 14 47 80 171.55 ar.ad
0.8989 0.8125 0.2083 101810  B1.57 185.30 40,59
0.8569 0.8830 0.1960 121630 5553 226 58 44,50
0.8338 0.8532 0.1873 142160 5963 256.77 4791
0.8021 0.8234 0. 1804 162680 6357 286.17 21.63
07737 0.7945 0.1716 180780 &7.61 32547 55.84
0.7448 0.7687 0.1660 193280 T1.64 358.23 5947
0.7163 07400 0.15084 2067.890 T588 385.30 63.00

EEEEEE‘EEEE% RERESSHERE

s
=
m
|

0.9567 0.2607 0.2082 BT 15 39.87 153.90 32.04
0.9307 08370 0.1897 691.86 43.54 187.54 35.66
0.8023 0.6122 0.1801 817.00 47.61 21840 3868
0.8593 0.BB37 0.1694 §18.76 51.58 246.81 41.82
0.8394 0.8548 0.1581 102400 5554 2B8.18 45 85
0.8064 0.8248 0.1538 1151.50 58.51 318.48 49.13
0.7703 07843 0.1538 132100 6348 326,95 51.82
0,7386 0.7640 0.1547 144860 @745 3568.67 55.49
0.7081 0.7346 0.1530 157610 7141 386.95 58.20
0.6843 0.7068 0.1482 170870 7538 430.60 63.80

0.9609 0.8661 0.2269 574.01 3066 138.54 31.43
09342 0.8430 0.2040 T10.24 4383 168.83 .44
0.8045 0.59164 0.1825 810.26 47 80 197.28 3oy
0.8728 0.8879 0.1800 BOB. 66 51.57 228 14 4146
0.B406 0.B588 0.1729 996 06 55.58 250.47 44.87
0.8098 0.8285 0.1661 1087.50 5964 292 589 48,61
0.7803 0.8012 0.1617 117680 6367 323.86 52.36
0.7507 0.7734 0.1579 1268630 B7.T1 354.11 55.00
0.7237 0.7466 0.1531 138570 T1.75 38981 59.69
068482 0.7214 0.1478 144510 7578 426,04 G3.42

-
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Following points may be observed from Table 4.13:

All the three penodic stochastic models preserve the storage performance characteristics
well, However, HMBB and PMABB models perform better than k-NN model. The k-NN
model overestimates the two reliabilities, restlience and évent vulnemability and under
egtimates the mean event deficit. The PMABB model is seen to be marginally better than

the HMBE in predicting both the reliabilitics, Hence, the PMABB model is adopted for

further analysis and discussion in this research work.

4,6.2.1 Siorage - Volume Reliability - ¥ield Relationships

It is seen from the storage-volume reliability-yield relationships (Fig 4.10) that the
volume reliability declines sharply with increasing yield, while the increase in volume
reliability with increase in reservoir storage capacity is comparatively less. Moreover, the
“ingrease in volume reliability with increase in storage capacity” decreases for higher
values of storage capacity and this decrense is more pronounced al lower yields, since the
magnitudes of reliability being dealt with are quite high {above 95%), The actual live
storage capacity of 732 Mm® would vield a volume reliability of nearly ¥3% for 75%
yield, while it would decrease to a value of 77.3% for 85% yield. If the same volume
relighility of 83% is to maintained for an increased yield of 85%, than the stomge
capacity is 1o be increased 1 1000 Mm®, which will require a reservair storage capacity

EXPANSION.
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4.6.2.2 Srorape - Occurrence Reliabifity - Yield Relationships
It may be noted from Fig 4.11 that the storage-occurrence reliability-yield relationships
follow & simlar trend as the storage-volume reliability-vield relationships except that the

occurrence reliabilities, in general are about 1% to 2% lower than the volume reliabilities.

4.6.2.3 Storage — Resilience - Yield Relationships

It may be observed from Fig.4.12 that the resilience, in general, decreases with increase
in the yield (for the given storage capacity). However, the decrease in resilience with
increase in yvield is observed to be small. This is because, as yield increases, the increase
in the number of events (increase in the value of the numerator) is found to be nearly
proportional to the increase in the number of failure periods (increase in the value of the
denominator). Likewise, the increase in the resilience with increase in the storage
capacity (for the given yield), 15 also negligible, the reasom being: the decrease in the
number of events (decrease in the value of the numerator) is nearly proportional to the

decrease in the number of failure periods {decrease in the value of the denominator),

oot PMABE model

055 -

g 078 4 ‘-.___‘LR‘:
> a0 “""-:TH‘
L8 Ty
® @ ® m s wm = ® o ° e
Yield (% of Mean Anrual Flow) ield (% of Mear Annusl Piew)
Fig 4.10: Storage - Volume Reliability - Fig 4.11: Storage - Occurrence Reliability -
Yield Relationships Yield Relationships
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Fig 4.12: Storage- Reshence - Yield

Relationships
4.6.2.4 Stovage - Period Vulnerability - Yield Relotionships
The period vulnerability-yield relationships (Fig. 4.13) do not exhibit any variation with
reservoir storage capacity, while the peniod vulnerability increases significantly with the
target yicld and this increase 15 found to be directly proportional to the target yvield, This
15 because ot all the storage capacities, the peniod yulnembility for a given target yield
becomes equal to the terget vield itself, due 10 the occurrence of highly eritical inflows
during a ceriain period in the 4100-vear long synthetic sequence of generated flows; and
even if the storage capacity is assumed 1o be as high as 1000 Mm’, the situation does not
ot all result in any improvement despite the additional filling space being available in the
FESCIVOIT.
4.6.2.5 Storage - Event Vulnerability - Yield Relationships
The storage-event vulnerability-yield relationships (Fig. 4.14) seem to follow nearly the
same trend as the storage-period vulnerability-vield relationships (Fig. 4.13). except for a

minor Jocal variation at 55% target yvield.
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4.6.2.6 Storage - Mean Period Deficit - Yield Relationships

For o given slorage capacity, with increase in the target yield, the mean period deficit also
increases systematically, in line with the decrease in occurrence relinbility (Fig. 4.15).
This is as per the expected trend. However, for a given target yield, the change in the
mean penod defiert with the storage capacity is found to be almost msignificant, which iz
alzo in tume with the trend of the behaviour of the occurrence reliaality with storage

capacity,

4.6.2.7 Storage - Mean Event Deficit - Yield Relationships

For & given storage capacity, with increase in the target yield, the mean event deficit also
increases systematically (Fig. 4.16). However, for a given target yield, the change in the
mean event deficit with the storage capagity is found (o be almost insignificant al lower
yields, while it is somewhat significant at higher yields. Moreover, it may be noted from
Fig. 4.16 that for lower storage capacities and higher target yields, the increase in the
me:n event deficit with increase in the target yield is insignificant. This is due o the

unproperiionate increase in the mumber of events when compared with the number of

failure periods.
an M
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4.7 SUMMARY AND CONCLUSIONS

hver-year Reservoirs

PMABE model
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Fig 4.16: Storage - Mean Event Deficit -
Yield Relationships

Following behaviour analysis based on stochastic simulation, 5-P-Y relationships have

been constructed for use in planning and design spplications of over-year water supply

reservoirs, using standard operating policy. These relationships are useful in: (1) paining

an understanding of the varation of reservoir perlormance indicators oamely, reliability,

resilience, and vulnerability on the storage-yield plane; (ii) idemtifying the sensitive

ranges of storage capacity of the over-year reservoirs, with regard 1o performance

charactenistics; and (iii) selecting between capacity expansion and demand management

options, in case of deficit water supply systems.

For highly over-year reservoirs, resilience and vulnerability do not scem to improve with

increase in storage capacily, and hence, the decision regarding storage capacity depends
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on relishility, Approximate ranges of over-year storage capacity of water supply
reservodrs, required o meet various target yields with a desirable range of reliability (0.95
to 0.99) are presented for & few selected cases of C, and py of annual streamflows. For
lower target yields, there is no significant improvement in resilience at low as well as
high storage capacities, while a significant improvement is noted for the range in
between, With increase in targel yield, this transition range widens and moves towards
higher stornge capacities, eventually ending up in {1t storage-resilience relationships for
high target vields. In addition, appreciable reduction in vulnerability is noted in a certain
range of storape capacity and this range widens and moves townrds higher storage
capacitics with increase in target yield and/or C,. This can be exploited in certain water
supply systems, wherein the marginal value of either increase in resilience or decrease in
vulnerability or both, is quite high. A S-P-Y database with a search facility has also been
developed that would help i planning and design of reservoir capacity and in decisions

regarding capacity expansion or implementation of demand management programs.

Within-pear Reservoirs

For the Dharoi reservorr streamflows, the reservoir storage performance measures have
been computed from the 41-year long historical flow sequence as well as the 4100-year
long synthetic flow sequences gencrated from the three stochastic streamflow models
considered {(k-NN, HMBB and PMABR), for seven combinations of storage capacity and
ten combinutions of yield (expressed in % of Mean Annual Flow) given below:

Storage capacities {Mm®}: 500; 600; 700; 732; 800; $00; 1000.

Yield (% MAF) to be supplied by the reservoir: 50, 55, 60,..., 90, 95,
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The results and investigation are presented only for the PMABB model, although the
HMBB model yields competitive performance.

The reservoir performance-yield relationships obtained wre presented for the existing
reservoir storage capacity of 732 Mm® of Dharoi reservoir, using the historical flow
sequence as well as the three long synthetic sequences penerated from the three periodic
stochastic models considered. The actual live storage capacity of the Dharoi reservoir
{7132 Mm"} would yield a volume reliability of nearly 83% for 75% yield, while it would
decrease to a value of 77.3% for 85% yield. If the same volume reliability of 83% is 1o
maintained for an increased yield of 85%, than the storage capacity is to be increased o

1000 Mm’, which will require a reservoir storage capacity expansion.

The decrexse in resilience with increase in yield is ohserved to be small. Likewise, the
increase in the resilience with increase in the storage capacity (for the given yield), is also
negligible, the reason being: the decrease in the mumber of events (decrease in the value
of the numerator) is nearly proportional to the decréase in the number of failure periods

{decrease in the value of the denominator).
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CHAPTER 5

OPTIMAL HEDGING RULES FOR WATER SUPPLY RESERVOIRS

51 INTRODUCTION

Water Resource projects invelve huge initial outlay and hence it is important to operate
them efficiently not only during normal operating conditions but also during extreme
situstions like droughts. The standard operating policy (SOP) is a simple reservoir
operating policy that satisfies the demand when sufficient water is available and if not
supplies the available water. This policy minimizes the total shortage over the operating
homzon. However during droughts, SOP would result in single period of severe shortage
(Vulnerability), which could cause heavy loss of life and property. Thus, effective
demand management strategies must be devised to reduce the severity of shortage by
distributing the deficits over longer periods, Hedging is one of the simple and common
demand management strategies employed by water supply managers to reduce the
severity of droughts. Hedging increases water stored in the reservoir by accepting small
currents deficits to guard against unacceptable large deficits that may ocour in future,

Thus, hedging provides insurance for high-valued water uses where reservoirs have low

refill potentials or highly uncertain inflows.

52 LITERATURE REVIEW
Hedging rule decides the storage allocation of water across time to minimize the impact
of the drought. The optimal appropriation of water can be done by analysing the bencfits

of current refease as apaingl the benefits of storing water for future use as carmyover



storage (Draper & Lund, 2004}, However, it is difficult to derive the actual benefit
function since it is time varlant and case specific, Hence, the water supply charactenistic
of reservoirs is used 1o evaluate their performance, The water shortage characteristics are
the primary criteria for evaluating the supply-demand relationship of reservoir during
drought (Shigu, 2003). Hashimoto et al. (1981) proposed the indicators reliability,
resilience, and vulnerability to measure and monitor the performance of water resource
systems. Occurrence based reliability is an indicator of the frequency of occurrence of the
deficit, and is computed as the number of times the {arget demand is satisfied to the total
number of operating time periods. Volume based reliability is a measure of the ability 1o
satisfy the volume of demand and is computed 2s the ratio of total water supplied to the
total water demanded, . Shortage ratio 15 the ratio of total volume of deficits to total
volume of water demanded and is an indicator of the total deficit in meeting demand
during the operating horizon. The shortage ratio is also the complement of the volume-
based reliability. Resilience symbolizes the recovery rate from water shorlage (failure) 1o
normaley (success) and is defined as the number of times the system has moved from
failure to success to the total number of periods the system has been in the failure state.
Vulnerability is the largest single period shortage encountered during the peried of
operation of the reservoir and is a measure of the severity of the shortage. The evaluation
of the trade-off between these performance indicators would help the decision makers 1o
arrive at the optimal hedging rule (Srinivasan et al, 1998). Hedging aims to reduce
vulnerability by increasing the storage, at the onset of the drought, by proactively
accepling small deficits even when sufficient water is available. This would reduce the

severity, by distributing the same over more number of periods, However, in some cases,
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deficits may be accrued in anticipation of a severe drought in future, but the situation may
not become so severe in future, This may increase the total shortage over the operation
horizon. Thus, & reduction in vulnerability may result in an increase in shortage ratio and
vice-versa. The optimal hedging policy must aim to reduce the vulnerability significantly

with a minimal increase in shortage stio.

The tripger for the mitiation and the termination of hedging along with the amount of
rafionmg o be dome in each time step tymeally charactenze a hedgmg rule. The
parameters of a hedging rule can be expressed as a function of water available in the
reservoir, which is the sum of the current storage and the expecied inflows into the
reservoir, Bayazit and Unal {1990} defined the two-point hedging rule mn terms ol
starting water availability (volume of water availability above which the reservoir
release i3 hedged, SWA) and ending water availability (the wolume of water
availability at which hedging is stopped and normal situation is restored, FWA) In
case of the two-point hedging rule, when the water availability falls below the SWA, then
the entire water present in the reservoir is released towards meeting the demand. So the
storage of the reservoir al the end of this ime period will become zero. In the next time
period, water available becomes the same as the inflow inlo the reservoir. I the reservoir
iz still facing drought, then the water availability becomes very less and so the
vitlnerahility will be the same as in case of standard operating policy. So in order to
reduce vulnerability, it may be preferable 1o opt for o hedging policy with a low SWA,
and high EWA.

154



The effectiveness of hedging ruies can be enhanced by having control over the amount
of water to be released dunng hedging. Srinivasan and Philipose (1996, 1998)
mcluded the hedging facior as an independent parameter along with the starting
water availability (SWA) and the ending water availability (EWA) to define the
muodified two-point hedging rule, The hedging factor specified the amouml of
hedging to be done in each time siep. The modified two-point hedging rule essentially
provides an offset to the SOP in the peniod where hedging is done. This hedging rale is
not flexible, as the slope of both the phases of rationing, and the amount of offset
provided all depend on the single parameter “hedging factor”. Hence although this rule
can be effective in attaining low vulnerabilities, this may be realized at relatively high
values of shortage ratio. They evaluated the trade-off among the reservoir performance
indicators for thousands of hedging policies using Monte-Carlo simulation technique,
This simulation model does not yield the optimal trade-off surface between the
performance indicators considered. Shih and ReVelle (1994) used mixed-integer non-
linear programming techmique and polvtope search procedure to find the optimal linear
hedging rule with starting water availability as the only decision vector, by minimizing
the maximum shortfall or vulnerability. They found that the mixed-integer non-linear
programming technique gives better solution than polytope search procedure but at the
expense of more computing time. They also suppested that the optimal hedging rle
could be converted into multiple discrete hedging rules for practical implementation,
Shih and ReVelle (1995) formulated an explicit two-phase disercte hedging

rule and implemented the same wsing mixed-inicger programming model. This
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formulation sought to determine the trigger volumes for the different phases of
rationing with the cobjective of maximizing the mumber of months in which no
mationing (or maximizing the relinhility) would be required, subject 1o a constraint on
the number of months with second phase of ratiening. The amount of the mtioning lo
be done during the different phases of hedging was pre-fixed and by progressively
increasing the intensity of rationing, the vulnerability could be decreased. Although
the discrete hedging rule cen be effective m achieving low vulnerability, it s not
flexible as the slopes of both the phase of mtioning are fixed at zero. This is likely to
reduce the possible number of competent solutions, thus limiting the flexibility 1o the
decision maker. Moreover, since the amount of rationing was not internally optimized
within the formulation, the optimal hedging policy could not be arrived at, Also, this
formulation was solved for only a single critical drought and cannot be easily solved
for long sequences as done in drought analysis, smee large number of mixed integer
variables would increase the computational burden. Neelakantan and Pondarikanthan
(1999} determined the threshold to initiate hedging by minmmizing the sum of the
squared deficits. Oliveira and Loucks (1997) proposed a piecewise linear hedging mule
to derive the optimal hedging operating policy for multi-reservoir systems using genetic
algorithm (GA). However, the performance of the hedging rule was evalualed based
only on the single objective of minimizing the total deficit. Shiau (2003) developed a
reservoir supply index, which was used as an indicator for the onset , the termination
and the guantum of rationing to be done at each time period. The reservor

supply index was defined as the probability that reservoir storage plus inflows would
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be sufficient 1o meet the demand. They also used a number of performance
indicators to quantify the single perind shortage, the event shortage and the long-
term effect. Recently, Shiau and Lee (2005) have explored two types of hedging,
gne based on water availability {(defined as storage plus inflow) and the other
based on the potential shortage condition within a specific future lead-time period.
The length of lead-time is determined by minimizing vulnerability and shortage ratio.
Compromise programming was used to solve the muli-objective poblan which, in turn,
miroduced three addittonal variables, in terms of weights and an exponent. One of
the significant drawbacks of the compromise programming is the sensitivity
towards weights. In their works, the weights and the exponent are not internally
optimized and hence many optimization runs are to be made if a sensitivity analysis

is Lo be done on the weights and the exponent.

5.3 PROPOSED STUDY

After eritically reviewing the existing hedging rules for water supply reservoir
operation during droughts, a new hedging rule is proposed in this study by
effectively combining the two existing hedging rules, namely, modified 2-point
hedging rule and discrete hedging rule, with the aim of introducing more flexibility
into the hedging formulation and thus obtain more competent trade-off solutions,
The new hedging rule proposed herein, being more flexible and more general than
the other hedging rules discussed, is expected o provide more efficient, effective
and continuous  distribution of the trade-ofl relation between the objective

functions. Although a number of hedging rules exist in literature, there has not been
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any comparative study that investigates the efficacy of the trade-off solutions
obtained using these hedging rules in & multiple objective optimization model
framework that seeks to minimize the vulnerability as well as the shorage ratio
over the period of operation considered. Hence, there is a need to develop a multi-
ohjective optimization framework that is able to compare across different hedging
rules and arrive upon the hedging rale that yields the best set of trade-off solutions
for the given problem. This framework should also explicitly incorporate the
different probabilistic reservoir performance indicators as constraints within the
multi-objective framework. An attemptl is made in this study (o develop such &
framework that would enable the managers of water supply projects to find the

most appropriate hedging rule so that the water supply reservoirs can be operated

prudently during droughts,

54 MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

The following multi-objective optimization framework is developed in this
research work to obtain the optimal trade-off between the two surrogate objective
functions mentioned below, for the proposed hedging rule as well as four of the

popular hedging rules existing in the literature.

Objective Functions:
1) Minimize Period Vulnerability: Z| = Minimize | Max (I — Ry)} (5.1
2) Minimize Shortage Ratio: 22 = Mimmze { ¥ ((Dx —R1)/) 2D} ...(52)

where [ denotes the demand at lime 1, Rt denotes the release 1o be made at time ¢,
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Constraints:

Performance Related Constraints: While shortage ratio {(complement to volume based

relishility) and vulnmerability are two of the two primary indicators thai need to

be minimized during critical drought, it is also desirable to keep some of the aother

performance related constraints (such as the number of deficit periods during the

operation horizon) under check,

This will help in increasing the perccived

confidence of the stakcholders in the drought management system being practiced.

Some of the typical performance related constraints are listed below (eqs, 5.3-5.7).

Ocecurrence based reliability

d, = duration of the i failure event
M = total number of failure events
T

= total number of periods of operations

Res=—— 2 ¢,

29,
1

d; = duration of the | failure event

Event vaulnerability
V, =max[E,E,....... E,.E, ] ¢

E, = Ii‘,[q -R) F12..M

Dy = demand at period 1

R; = releasc at period i

Ej = total deficit in ™ failure event
d = duration of the _]'"1 failure event

(5.3)

{5:4)

(5.5)
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Mean event deflicit

iﬂi -R,
MDD =

et v <0y (5.6)
Mean period deficit

T

Eﬂr = H!
MD = J""N— = Gy (3.7)

N = total number of faiture periods

In equations (3. 3(3.7), ¢y, €3, ..., &5 denote pre-specified limiting performance values.

Constrainis specifying the hedging rules:

The constraints that specify the hedging rules are presented and discussed in this section,
Four hedging rules are presented including the one proposed in this research work.
Constraints corresponding to any one of the four rules (optional) can be activated within

the framework and solved.

5.4.1 HEDGING RULES

5.4 1.1 Two-point Hedging Rule

The definition sketch of the two-point hedging rule suggested by Bayazit and Unal

(1990} is presented in Fig. 5.1. Equations (5.8) to (5.14) describe this hedging rule.
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HRelease

w

Water Availability

Fig. 5.1 Definition Sketeh of two-point hedging rule

Ry =8 +0Q if 8+ SSWA, (5.8)

R =SW4 +{S'+EE;§*‘T’_'¥HT;}‘W’"} if SWA, <8 +0, <EWA, (5.9)

Ri=1Ix if EWA;< 5§+, <= D+C (5.10)
Ry=8t+(y-C if S+Hx>DHC (5.11)
Sei=5+0-R; (5.12)
SWA=a*Dy {5.13)
EWA,=D, +(C* ) (5.14)

In_mqs. (5.8)-(5.14), S5, denotes the initial storage, Sy the final storage, Ry the release and
Q; the inflows during time ¢ period and C the capacity of the reservoir. Herein, the water
availability is defined as the sum of the currenl storage and the expected inflows. In this
hedping policy, a linear kedging is implemented when the water availability falls between
the starting water availability (SWA,) and the ending water availability (EWA) (eq. 5.9).
Below SWA,, no hedging is done {eq 5.8) and the all the available water is released to

salisfy the demand. IF the water availability exceeds EWA, (eq 5.10), then, no hedging s
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implemented and water is released to gatisfy the entire demand. If the water availability
exceeds the sum of storage capacity and demand (eq 5.11), then after meeting the
demand, the surplus amount of water is spilt over from the system. Equation (5.12) is the
continuity equation for the single reservoir system that relates the final storage at the end
of the period of operation 1o §;, () , and R, . Herein, evaporation is not considered in the
formulation.

In the optimization formulation of the two-point hedging rule, the decision vector
consists of two parameters namely, starting water availability and ending water

availahility, expressed in terms of @ and B, respectively,

5.4.1.2 Modified two-point hedging

The basic definition sketch of the modified two-point hedging rule supgesied by
Srinivasan and Philipose (1996, 1998) is presented in Fig 5.2, Equations (5.15) o
(5.22) describe this hedging rule. This hedging rule rations on the demand when the
water availability in any period falls in the range between the demand (1)) and the
ending water availability (EWA,) (eq, 5.17); while, hedging is done on the water
availability, when the water availability self falls im the range between (the
starting  water availability (SWA) and the demand (eq. 5.16). Hedging faclor
(HF) specifies the amount of rationing/hedging to be done. For simplicity, a
constant HF is used in both stages. Below a water availability of SWA, the
available water is released (eq. 5.15), whereas above a water availability of EWA,,
the full demand 13 released (no hedging) (eq. 5.18) When the water availability is

greater than (D, + C), the demand is filly satisfied md the swphs water & spilt from the

reservoir {eq. 5.19).
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Release

EWA

- L3
D DA Water Availability

Fig.5.2 Sketch of modified two-point hedging rule

Ry= S+ 0Q if 8,4 Q, <SWA, (5.15)
Ry=(1-HF)*(5,+ Q) if SWA, < §,+Q, <Dy (5.16)
By=(1- HF)* (D) if Dy <5+ Q= EWA (5.17)
Ri=D), if EWA, <S8+ Q<D+ C (5.18)
Ri=8i+Q-C if 80 =D+ C (5.19)
1 =S+ Q- Ry (5.20)
SWA=a* D, (521)
EWA, =Dy +(C * B) (5.22)

The decision varinbles in case of the modified two-point hedging rule are o, f and

hedging factor (HF).

3.4.1.3 Discrete hedging
The definition sketch of the discrete hedging rule proposed by Shih and Revelle
(1994, 1995) is presented in Fig.5.3. Eguations (5.23) to (5.31) describe this

hedging rule. In this rule two phoases of mtioning of the demand are introduced
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progressively and the amount of rationing depends on the severity expressed in terms of

water availability,. When the water availability exceeds V, {eq. 5.26), no rationing is

implemented. When the availability goes below this value, only a part of the demand (e

* D) would be released. This is the first phase of rationing. If the water availability

becomes lesser than Vi, (eq, 5.24), then 2 more severe second phase of water rationing 15

implemented. If the water availability becomes lesser than Vy, (eq. 5.23), no water is

released from the system. On the other hand, if the water availability is greater than the

reservoir storage capacity even after satisfving the full demand, then the surplus over the

capacity will be spilt. This condition is described by eq. (5.27).

Release
F Y
D ——
,u_lD—— —_—
| I | | .
Vig Vip Vip D+C Water Availability
Fig. 5.3: Definition Sketch of discrete hedging rule
R,=0 if S+ sV, (5.23)
Ry=mD if Vap <8+ Q< Vi (5.24)
Bi=oqy D if V<5 +Q =V, (5.25)
Ri=D, if Vip< &+ Q=D+ C (5.26)
Re=5+(-C if S+Q>Dy+C (5.27)
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S =5+ Q- Ry (5.28)

Vip=Dy+ (ks * C) (5.29)
V3 =Dy~ (ks * C) (5.30)
V3= Dy— (ki * €) (5.31)

The decision variables of discrete hedging rule are oy, a3 ki, k; and k.

3.4.1.4 Proposed Hedging Rule

The definition sketch of the new hedging rule proposed in the present study & shown
in Fig. 5.4, Equations {3.32) to (5.39)describe this hedging rule, The new hedging rule
consists of two phases of rationing and the emount of release in cach phase 1s lincar
function of the waler availability. The slope of each linear phase is a decision vector. In
order to provide added flexibility the starting point of cach phase of hedging is
provided with an offsel just like in case of modified two point hedging rule(Fig 5.2),
The hedging rule proposed in the present study is o more generic hedging rule as
the other twohedging rule are special case of this hedging role. When the slope of both
the phases of rationing is zero then the hedging rule becomes discrete hedging rule. 1f

the slope of each linear phase equals the amount of offset provided then the proposed

hedging rule becomes modified two-point hedging rule.
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Y

1

| | ] | .
D-(k*C) D-{k*C) D+(k*C) D#C Water Availability

Fig 5.4: Definition Sketch of the Proposed Hedging Rule

According to this rule, when the water availability exceeds V,, (eq. 5.35), no rationing

i5 implemented, If the water available is less than ¥y, and more than Vo, (eq 5.34) then

the first linear phase of rationing is implemented. If the water availability goes below

Vap but more than Vi, (eq. 5.33) then a more severe phase ol linear rationing 18

enforced. If the water available is less Vs, (5.32) then the available water is released. If

the water available i reservoir after satisfying the demand exceeds the reservoir

capacity then the excess water is spilled over (eq. 5.36).

Re= S+ Q) if 8+ 0y <= Vs
Ry=my (S + Qy - Va)+ oy D, i Vi <8+ Q<= Vg
Ry=mg*(S + Q= ¥+ 0z Dy if Vip<8i+Q==V,,
Re= Dy if Vip<S+Q=D+C
Ri= S+ Q- C if S#Q>D+C

(5.32)
(5.33)
(5.34)
(5.35)

(5.36)



Vip=Dit(ka*C) (5.37)
Vs, =Dy~ (ks * C) (5.38)
Vi = D— (ky * C) (3.33)

The decision vectors of proposed hedging rule are @y, ap, my, mg, k;, ks and k;.

5.5 SOLUTION TECHNIQUE

Genetic Alporithm (GA) is a search technique random search that explores the solution
space for promising regions and them search for solutions more intensely i these
promising regions, Genetic Algorithm are based on a simple assumption that the best
solution is found in regions of solution space having high proportion of good solution
(Oliveira and Loucks, 1997).The evolulion stasts from a population of completely random
individuals and happens in generations based on the principle of the “survival of the
fittest™, Since GA deals with a population of points rather than a single paint like in
classical methods, it reduces the chances of getting trapped at some local optimum,
Moreover multiple objective cvolutionary algorithms (MOEAsg) are suitnble for
hendling complex problems involving discontinuities, disjoinl feasible spaces and
noisy function evaluation (Fonscca and Fleming, 1995). A powerful multi-objective
genetic algorithm known as Non-Dominant Sorting Genetic Algorithm — 11 (Deb et

al., 2002) is used for solving the multiple objective optimization model.
NSGA-IT was proposed by Deb elal. (2002} to overcome the high computational

complexity of non-dominant sorting, lack of elitism and the need for specifying a

sharing parameter in the non-dominant sorting based MOEAs. NSGA-1T evolves the
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trade-off surface from a random parent populstion of size N. The parent population is
ranked based on non-domination and each non-dominated solution is assigned a fitness
rank. The child population of size N is created from the parent population through binary
tournament sclection, crossover and mutation. Binary tournament selection ensures that
the solution having better fitness function has higher probability of selection for cross-
over and mutation. Crossover operalor combinegs two chromosomes to produce a new
chromoseme. The new chromosome may give better fitness function than the parents if it
takes best characteristics from the parents. Mutation operator alters one or more gene in a
chromosome. As a result a new gene 15 added o gene pool and genelic algorithm may be
able 1o mrive al better solution through a new search path. Mutation occurs sccording Lo
user defined probability and it is set at a low value to prevent the search from uming to
random search. A mating pool of size 2N is formed by combining the parent population
and the child population, The mating pool is fast non dominated sorling procedure to
identify the non-dominant fronts. If the number of non-dominant solutions in the fronts
exceeds the population size N then the crowded comparizen operator is used to reject the
solutions from the last front. The erowded distance operator is used 1o preserve the
diversity of the solutions. The above procedure 15 repeated till the stopping gencration is
reached, Fig. 5.5 gives the block diagram of the working of the multi-ohjective

optimization framework.
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Fig 5.5: Block diagram of the Multi-objective Optimization Framework



5.0 CASE EXAMPLE - DHAROI RESERVOIR

For the purpose of evaluating the storage performance of the alternative hedgmg
policies, one long synthetic sequence of monthly inflows of 4100 years similar 1o the
historical sequence of 41 years of monthly flow data measured near Dharoi reservoir
site, India, has been generated using the Perturbed Matched Block Bootstrap (PMABB)
proposed in the third chapter of this report. The monthly streamflow data, model
structure  identification, estimation/selection of parameters, generation of dais,
verification and validation exercises have already been discussed as part of Chapter 4 of
this report. The performance of the four different hedging rules is evaluated by routing
the synthetic flows through & single hypothetical water supply reservoir (Dharod)
using the synthetic streamflows from PMABB. The multi-ohjective genetic algorithm
deseribed earlier is linked to this simulstion program for evaluating the fitness functions
and checking if the constraints are zatisfied. A typical simulation baged outpin obtained
by routing the historical flows throwgh the Dharoi reservoir is shown in Appendin-2. This
work assumes two different wield levels, namely, 75% and 85% MAF, Also, two
formulations, one unconstraned and another constrained have been run and the resulis

have been processed and tabulated, These will be discussed in a later section,

Senxitivity Analysis
A briefl sensitivity analysis of the various parameters of the multi-objective genetic
algorithm was done. Based on these resulis, one set of parameters is adopted for all the

four hedging cases for both unconstrained and constrained formulations. This set of

parameters is given in Table 5.1,



Tabiz 5.1 Pa@utqrs of NSGA-T]

§No. | Parameters of Two- point | Modified Two- | Discrete Proposed
e Hedging point Hedging | Hedging Hedging
Rule Ruie Rule Rufe
1 | Crossover Probability] 0.70 0.70 0.70 0,70
2 | Mutation Probability 0.010 0.010 0.010 0.010
3 Random Seed (.44 0.40 0.40 .40
4 Population 100 100 100 100
5 Generation 300 300 300 N0
5.7 RESULTS AND DISCUSSION

5.7.1 Discuszion of Resultz - Unconsirained Formulation

The non-dominant fronts that indicate the trade-off between the period vulnerability

and the shortage ratio, obtained from the four differemt cases of hedging

corresponding to the unconstrained formulation are presented in Figs. 5.6 and 3.7

respectively for 75% MAF and 85% MAF yields.

&5
{1 =& Unconsirainad
50 - T5% MAF
! Hedging Rules
a5 4 ¥ o Two-point
] * o Modified Two-paint
a0 ':' & Discrete
aw
4 v Proposed
35 - a¥
k v
30 - B
1 &
25 - 'D‘.'.I [
. o
20 ‘rﬁ O O
15
| TR L R N LI |
33 an 4@ 44 &b 48

Yulnerability i
Fig. 5.6 Trade-off between Shertage Ratio and Vulnerability -
Unconstrained case; Yield = 75% MAF
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Fig 5.7 Trade-off between Shortage Ratio and Vulnerability -
Unconstrained case; Yield = 85% MAF

It is observed from Fig. 5.6 that the trade-off curve obtained using the two-point
hedging rule does not vield zolutions in the domain of low valnerability, although on
the other extreme, it is able to yvield a solution with the least SR, The non-dominani
front obtained in this case is apparently far from pareto-optimality, This is because
tho flexibility offered by this hedging rule is limited due to the constant ratio of the
release of the water availability throughout the hedging period Fig.5.1 the same
behavior is also portrayed by Fig. 5.7., which also refers to the unconstrained case

but with a higher yield of 85% MAF.

A further observation from Fig. 5.6 is that the discrete hedging rule yield very less
number of non-dominant solutions in the low vulnerability domain, thus offering

less flexibility for decision-makmg. However, this rule also performs well in the low
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shonage ratio region. On the other hand, the modified two-point hedging rule and
the proposed hedging policy offer a good spread of non-dominant solutions in the
low vulnerability as well as the low shortage ratio domains. On the low vulnerability
side the modified two-point hedging rule is seen to perform slightly better, while the
proposed hedging rule performs marginally better in the low shorlage ratio domain.
However, the coverage and the density of non-dominant solutions obtained ase
somewhat better in case of the proposed hedging rule. Similar behavior of these two
hedging rules is also observed in case of 85% yield (Fig. 5.7.), except that the
proposed hedging rule performs belter in the low vulnerability region as well.

More detailed results obtained from the simulation of the three selected hedging
policies (one from either extreme of the non-dominant front and one compromising
policy based on neamness o the origin on the multi-objective space) for all the four
cases of hedging, are shown in Table 5.4 and 5.5. Also, the corresponding decision
vectors and the evaluated objective function values of these three selected hedging
policies for all the four cases of hedging ore presented in Tables 5.2 and 53

respectively.

173



Table 5.2 Hedging Parameters for three szlected Non-dominated solutions -
Yield = 75%; Case: Unconstrained, Reservoir: Dharoi

Hedging Period | SR
Policy und Decision Vedtor (Hedging Parameters) Vel | (%)
Objectives (Mm’)

1 Paint Helging i B

:.fi:-ﬂ;ﬂl 015 | 100 S50.156 | 29.789
E.ﬂrmi“ 012 | B2 51,937 | 26285
E?:ﬂmm 023 | 0.00 596538 | 17.049
Hedging ¥ ] § W

Eﬂ;‘, il 031 | 096 | 0.64 38753 | 51.945
Suw“’ 020 | 046 | 0T 42002 | 26476
;"ﬁiﬂ] 099 | 0.58 | 0.00 59638 | 17.049
m i 3 Ky ka | ks

ju"’i‘{‘m 031 | oot | oaz | 057 | om 41781 | 29.253
Em':“’.'l;"""ﬂ“ 027 | 022 | 035 | 03 | o036 44,203 | 23.664
Eﬁﬁsm 031 | 042 | 03 | 03z | oo 60.552 | 17.300
ﬁm 1 iy n, ni; ks k: | ks ]
E-E{If\r a0 oor | 031 | 019 | oo | ez | o3z | a9l | 4pa38 | 4630
wh’ 001 | 030 | 622 | ooo | oos | 032 | oas | 2386 | 260m |
_E"if{ Vosr | ass | oss | oss | wse | 100 | 000 | sosrr | svass

Vual: Pennod Vulnerability (Mm™);  SR: Shortage Ratio (%)
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Table 5.3 Hedging Parameters for three selected Non-dominated solutions ~
Yield = 85%:; Case: Unconstrained; Reservoir: Dharoi

Hedging Period | SR

Policy and Decision Yector (Hedging Parameters) Vul, (%)

Objectives (M}

2 Polat Hedging a B

O 1

| Min. (Vul i 1.00 59444 | 34.584
Compromkse

Policy 008 | 072 61691 | 297M
b2

| Min, {SR) 23 | Doo 67710 | 2T.600
Modified i

Medificd3point | ¢ | p | HF

Ohj.1:

Min. (Vall 070 | B8R | 069 47351 | 52619
Compromise

Policy 0.o3 044 0.74 50782 | 3200
Oy 2:

| Min. (SK) RS m58 {10 &1.710 | 22660
M¥izered

Hlﬂ'mf iy oy I'll I"I kl

Oy 1

Min, (V) 31 | oo | 015 | 093 | 048 47351 | 52.619
Compromise

Policy p23 | 008 | 043 | 024 | 038 ST841 | 30013
Ohj.2:

Min. (%1) e | 037 | 027 i, B {1, (e AE.625 | 22919
Proposoil

Hedging & | T | Wy | W Ky k: |k

GTTHE

Min. (Val) Bo8 | 031 | 675 | oo0 | oM | 04D | 080 | 47351 | 48158
o 013 | 025 | ows | eoo | oo® | oSt | o041 | si4e0 | 3143
Policy

g2

Wi, (SR) A 0.7l (.05 __'El.ﬁl a7 0,50 0. 87710 | 22670

Val: Period Vulnerability (Mm');  SR: Shortage Ratio (%)
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Table 5.4 Comparison of Dharoi Reservoir Performance for SOP and Four Hedging

Policies for three selected Non-dommant solutions; Demand — 75%; Case: Unconstrained

Reservoir Performance Indicotors®
Pali Mop-dominint Pericd Ewvent Ave, Avg.
" Solutions OBR | VBR | Res. | Wul | wul | Period | Fvem
(MmY | (Mmh Def Def
S0P
D.R09F | O.H3DS (166l | 108750 | SU.6d 202,59 AE6]
Cibj. 0 e
Min. (Vul) 00088 | 07022 | 0.0505 | 468830 | 5016 358.73 18.13
T Conpramniss
pati Policy 02503 | 07372 | 00688 | 463690 | 51.94 27637 19.02
Hestging by 2-
Min. (SR} A008 | DEMF | 00651 | IOET.S0 | 5984 25159 4561
Ol
Modified | M (Vul) 02299 | DA4806 | 00910 | 366210 | 3875 40213 G50
Two- | Compromiss
point | Policy (Ledle | 07313 | 0737 | 327760 | 4299 233.70 4159
Hedging | Obg.2:
Min. (5R) QLEO0E | OR295 | O.06&1 | 1087.50 | 5964 293,59 4861
Ohj.1;
Min, [V ul) 5874 | 07075 | 00707 | 3266.TD | 4178 230.82 4l
Discrete | Compromise
Hedging | Policy 06832 | 07634 01634 | 2232.80 | 4470 | 352.92 41,84
Obj2:
Min. (SR} 08170 | 08270 | O.JIBGHE | 103680 | 6055 | 283,58 3128
Obj.1:
Min. (Wul) 02515 | 05388 | 008046 | 3B74.30 | 40.84 373.03 33.43
Proposed | Compromise
Hedging | Policy 08434 | 73T CUETR | 323040 | 42.3% | 233.5] 3954
Cj2:
Min. (SR} OB09E | 08295 | (LIAGY [ORT.S0 | S062 | 20287 48.63

“* The reservoir performance indicators ave been computed using 41 00-year Joag monthly synthetic

streamflow sequence generated from PMABEB model
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Table 5.5 Comparison of Dharoi Reservoir Performance for SOP and Four Hedging

Policies for three selected Non-dominant sohutions; Demand — B5%; Case: Unconstrained

Reservoir Performance Indicaton®
Poli Mar-dominani [ 'F“u'iud-" Event AVE AvE
o Solutions OBR VBR Res. Val. WVul, Peniod Event
(Mm) | (Mm) | Def Def
i 0.7507 | 0773 | 0437 | 126630 | 6771 | 3s40) | 5550
ﬂ_t-‘i'h .12 0.6541 00468 | 385770 | 5944 S05.95 23.66
Two Mim. {"n"nl:!n
point h“""ﬂ'w"'“““’“ 0.2805 | 07020 | 0072 | 5777.20 | 6169 | 35321 | 2546
Hedgimg
O] 2
Min. (SR 07507 | 07734 1579 | 126630 [ &7.71 354.11 35.90
Ok 1:
Modified | Min,(valy | 02770 | GA737 | Q1003 | 447460 | 4735 | 4421 | 4476
Twe- | Compromise
; - 0.657 1670 : : ; _
“::;:" Policy 0560013 6373 i1 30T1.30 | 5078 2B6.47 47.91
Dhj2:
...."‘:1.“1-_.{33.} 07507 .7734 15 26630 | &7.71 35411 5590
Ohj1:
Min. (Vul) 02770 | 04737 | 01008 | 447460 | 4735 | 4da71 | a476
Diserete | Compromise )
Hedsing | Policy 631 0.6997 IGRT | 266910 52 54 294 0] 20,05
Db
Min. (SR) 0.7574 0. 778 1656 1266.0d 68,63 35092 810
3
Min. (Vul) 0.3377 | 04184 | 01089 | 442800 [ 4735 | 41063 | 4471
Proposed | Compromize
Hedping | Policy A0z | O6ES 01634 | 3587.90 | 5147 203 84 4560
Min. (SR 07509 | 07733 | 00581 | 126630 | 6071 354,07 LLT

* Thi reservair performance indicators have been computed using 4100-year long monthly synthetic
sireamflow sequence pepernted from PMABB model




5.7.2 Discussion of Results - Constrained Formulation

After carefully analyzing the simulated performance results of the unconstrained
formulation, it was decided o make some more runs with a view to converge to a
narrow domain in the decision space fo enable selection of a compromising pelicy for
implementation. The constraints of the formulation were activated in such a way that
there should be sufficient exibility while searching for the non-dominant selutions,
and al the same time convergence to a narrower domain should be achieved. For the
75% MAF yield scenario, after a careful inspection of Table 5.2 {that gives the range
of performance evaluation of the non-dominant solutions for the unconstrained
formulation), the following lower/upper limits were introduced for three of the
performance indicators {other than shortage ratio and period vulnerahility):
Dceurrence Reliability = 0,60

Mean Period Deficit < 45.0 M’

Mean Event Deficit < 300.0 Mm’

The decisions regarding the constraints to be activated and the limits to be plupged in
for the same were done after sufficient tnals. The results of this exercise are presented

in Fig. 5.8, Tables 5.6 and 5.7,
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Table 5.6 Hedging Parameters for three selected Non-dominated solutions —
Yield = 75%,; Case: Constrained; Reservoir: Dharoi

Hedging Period | SR
Faolicy and Decizion Vector (Hedging Faramieners) Yul { %)
Objoctives (Mm’)
I‘Enjl.lﬂndllul i [

1

M, (Vi) 005 | 038 36075 | 19.527
Compromise

Policy 005 | 038 56075 | 19.577
Ohj.2:

Min. (3R) 0,95 ((RVE] 59618 | 17054
Maodified 2-poini

Hegimg T | @ | » | BF

AR

b el 094 | 046 | 072 #5907 | 27.0m
Comgpramise

Polivy pe0 | 038 | 074 w09 | 24387
Db 2

M) 095 | 0.4 | o.m 59.638 | 17.0%2
Dise

Hm;';g iy 3 ki k: |k

Oy 1:

Min, (Vul) 0.3 o006 | 008 0.37 43 42386 | 26272
gmw 03 | 006 | 008 | 037 | 045 42386 | 26272
icy

Ohj.2:

 Min, (SR) 091 | 034 | 03 | 092 | nes 60.552 | 17,348
Propased

Hedging W | e | om | om | k| ke ks

Ohj. b

Mis. (Vul) 008 | 027 | 080 | o | 006 | 024 | 0851 | 44670 | 0238
E;Th]:m 0,00 0.2 {80 .0 {.Ih (.24 034 4568 | 23.089
Obj.2:

Min. (5R) 027 | 079 | 100 | o | a27 | o8 | o5t | 59817 | 17075

Vul: Period Vulnerability (Mm™);  SR: Shortage Ratio (%)
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Table 5.7 Comparison of Dharol Reservoir Performance for SOP and Four Hedging
Policies for three selected Non-dominant solutions, Demand — 75%; Case: Constrained

Rieservodr Perfomance Indicators®

: Mon-dominant Pervod | Event AVE. AvE.
Paticy Solutions OBR VBR Res. vl Vul, | Period | Ewvemt
(Mm®) | (Mm®} |  Def Def
50F 08098 | 0.8295 | 0.166] | 108750 | 5964 | 292359 | 4860
m‘ ’EW._. 06042 | 08048 | 00027 | 421070 | seos | 26054 | 2676

Twao - 4
point Eﬂ‘?;m“‘ 06042 | 08048 | 01027 420070 | 5608 | 26054 | 2676

Hedging -
Obj.2:

M (58 07925 | og29s | oasst | jeozs0 | sess | 28730 | 4097
ok, 1: 06437 | 07208 | 01763 | 292530 | 4360 | 23384 | 4112

Modified | Min. (Vaul)

06333 | 07562 | DI705 | 1732350 | 4431 24804 | 4244

point Podicy
Hedging ﬁlﬁﬁﬂl 07857 | 0.8205 | 01483 | 160200 | se.64 | 20095 | 4315
%Iwnn 06434 07374 a.1711 333E40 | 4239 23341 39 96
R:ET: E;H;I;ﬂm: (15434 0.7374 01711 323140 | 4239 233.51 30 94
'r?_d?ﬁ'.iésm 07864 | 0.8265 | 04511 | 160090 | 6055 | 29153 | 4406
Eﬂ?li%"fﬂ]} 0,547 L7077 0.1753 LG50 | Ao 23173 4063
m wﬂm 0. 7074 7691 01612 . _-I TE0.50 45.68 206020 41.54
Eiﬂj&ﬁ“} 0.7l E293 0. 1570 La47.70 5062 28249 4434

* The reservoir performance indicators have been E_nrﬁmin:d un-mt-l 1{H-year long monthly synihetic
sireamflow sequence genernted from FMABB madal

The comparison of the non-dominant fronts presented for the four cases of hedging

{Fig 5.8) shows that:

i) The two-point hedging rule does not vield any solution in the intermediate and
lower ranges of vulnesability, and in general, performs poorly.

ii)  The modified two-point hedging rule yields some pood non-dominant solutions
in the lower vulnerability region, but results in higher shoriage ratios in most

parts of the intermediate and higher vulnerability ranges.,
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iii)

The discrete hedging rule yields limited number of non-dominant solutions
compared with the modified two-point hedging rule and the proposed hedging
rule. Although this is yielding some very good solutions near the lower
vulnerability region, only a sngle solution is obtained in the entire
intermediate ranges of shortage ratio and vulnerability {which form the major
part of the compromising domain). Thus, this rule, when implemented into the
multi-objective optimization formulation, does not seem to yield sufficient
number of trade-off solutions to facilitate the decision-making process from a
practical stand-point,

The proposed hedging policy, is able to vield sufficient number of non-
dominani solutions when compared with all the other three rules and provides
very good non-dominant solutions near the minimum shortage ratio domain.
However, the non-dominant solutions obtained for the proposed hedging rule,
although well spread and are sufficient in number that offer the flexibility for
decision-making 1ts pareto-optimality near the low wulnerability region, is

somewhat poorer than the other two competing rules

5.8 SUMMARY & CONCLUSIONS

A mulii-objective optimization framework has been developed to evaluate optimal

hedging rules. This employs NSGA-l, an efficient mulii-objective genetic

algorithm technique that can handle constrained formulations. The evaluation

of the non-dominant solutions on the trade-off surface between the conflicting

objectives of minimization of vulnerability and minimization of shortage ratio
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helps us to compare the performance of the different hedging rules under water

shortage conditions.

A new hedping rule has been proposed in the present study which is more
generic than the discrete hedging rule and the modified two-point hedging rule.
From the results of the optimal hedging studics done using the Dharoi reservoir
data, the proposed hedging rule is shown to produce efficient non-dominant
fronts containing well-distributed non-dominant solutions. The compromising
hedging policies oblained using the proposed rule is shown to yvield a number of
trade-off solutions that exhibit good performance with regard to the different

reservolr storage performance indicators.



CHAFPTER &

SUMMARY AND CONCLUSIONS

6.1 Hybrid Non-lincar Data-driven Model for Annual Streamflows

A hybrid model that blends the two non-lincar data-driven models, ANN
(deterministic) and MBB (stochastic) is proposed for modeling annual streamflows of
rivers that exhibit complex dependence. First, & nonlinear deterministic model, ANN
(radial basis function network) is fitted to the historical annual streamflows, which
captures the nonlinear trend in the data effectively. Then, the resulting residoals from
the ANN model are resampled using & non-parametric resampling technique, moving
block bootstrap with a view to caplure the weak linear as well as the nonlinear
dependence and any distributional information retaimed in the residuals. The proposed
model has been applied to three annual streamflow data sets that exhibit complex
dependence, drawn from different geographic regiens with varyving record lengths, The
effective blending of the two dsta-driven models is shown 1o result in efficient

simulations of the long-term storage and drought-related charcteristics,

The ANN based Hybrid Model (ANNHM), being o completely date-driven model,
reproduces the features of the margimal distribution more closely compared o Linear
Parametric based Hybrid Model (LPHM), but offers less smoothing and little

extrapolation value, However, the linear dependence structure is better reproduced by

LPHM than ANNHM.

Drespite & better preservation of the linear dependence structure, LPHM does not seem

to cffectively predict the variation of critical drought duration with respect 1o



truncation level. On the contrary, ANNHM is able 1o mode] the variation of eritical
drought duration better, even though the preservation of linear dependence structure s
inferior to LEFHM. This s plausibly due to the effective blending of the two nonlinear

models. Also, the mean drought characteristics are more efficiently modeled by

ANNHM.

The relative bias in predicting the reservolr storage statistics at lower demand levels is
found to be high in case of LPHM. Moreover, a large spread of the same is observed at
all demand levels, thus mereasing the relative RMSE significantly compared with
ANNHM,

Future rescarch should address the extension of the proposed ANN-based hybnd
madel (o single-site and multi-site modeling of periodic stream flows. Also, different
hybrids could be tried and some smoothing can be introduced to get better variety and

varfability of the generated flows and the predicted water use characteristics thereof,

6.1 Periodic Stochastic Models for Monthly Streamflows

A new nonparametric method of conditional bootstrap is presented for simulating
multi-season hydrologic time series. It resamples non-overlapping within-year blocks
of hydrologic data (formed from the observed time series) using the rank matching rule
of Carlstein et al. [1998]. This algorithm searches the historical record to find
neighbouring blocks whose ends closely match the end element of the current block
and subscquently resamples their successor blocks. The resampled blocks are
perturbed using & weighted smocthing strategy with a window size of 12 months to

schieve smoothing and extrapolation in simulations.
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The proposed method, namely, perturbed matched-block bootstrap (PMABR), is
shown to be efficient in reproducing a wide variety of statistical attributes for both
hypothetical and real data sets. The verification and validation results presented here
support PMABB as a plausibly befter alternative to the non-parametric method “k-
nearest neighbour bootstrap of Lall and Sharma (1996)" and the hybrid periodic model
HMBB of Srinfvas and Srinivasan [2001ab] in simulating periodic streamflows, It s
believed that PMABB can provide a rather flexible and adaptive method for simulating

time serics @l fmer time scabes (eg., weekly, daily and hourly), where there is

progressively more structure 10 exploit.

The method provides simulations that are efficient in reproducing summary statistics,
dependence structure and the sakient features of the marginal distribution, without
compromising on smoothing, extrepolation and variety in simulations. As a result,
better prediction of storage capacity and critical run characteristics for water resources

design is achieved.

6.3 Storage-Performance- Yield {S-P-Y) Relationships for Reservoirs

ver-pear Rexervoirs

Following behaviour analysis based on stochastic simulation, 5-P-Y relationships have
been constructed for use in planning and design applications of over-year water supply
reservoirs, using standard operating policy, These relationships are useful in: (i)
gaining an understanding of the varintion of reservoir performance indicators namely,
reliability, resilience, and vulnerability on the storage-yield plane; (i) identifying the

sensitive ranges of storape capacity of the over-year reservoirs, with regard 1o
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performance characteristics; and (i) selecting between capacity expansion and

demand management options, in case of deficit water supply systems,

For highly over-year réservoirs, resilience and vulnerability do nol seem (0 improve
with ncrease in storage capncity, and hence, the decision regarding storape capacify
depends primarily on reliability improvement. Approximate ranges of over-year
stormpe capacity of water supply reservoirs, required (o meet various target yields with
a desirable range of reliability (0.95 1o 0.99) are presented for o few selected cases of
Cy and py of annual streamflows, For lower targel yields, there is no significant
improvement in resilience at low as well as high storage capacities, while a significant
improvement is noted for the range in between. With increase in target yield, this
tramsition range widens and moves towards higher stomge capacities, eventually
ending up in flat storage-resilience relationships for high target yiclds. In addition,
appreciable reduction in vulnerability is noted in @ certain range of storage capacity
and this range widens and moves lowards higher storage capacities with increass in
target yield andfor C,. This can be exploited in certain water supply systems, wherein
the marginal value of either increase in resilience or decrease in vulnerability or both,
is quite high. A 5-P-Y database with o search facility has also been developed that
would help in planning and design of reservoir capacity and in decisions regarding

capacity expansion or implementation of demand management programs.

Within-year Reservoirs
For the Dharoi reservoir stream{lows, the reservoir storage performance mensures have
been computed from the 4 1-year long historical Nlow sequence as well as the 41 (0-year

long symthetic flow sequences gencrated from the three stochastic streamflow models
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considered (k-MN, HMBB and PMABR), for seven combinations of storage capacily
(including the existing capacity) and ten combinations of vield (expressed in % of
Mean Annual Flow), The resulis and investigation are presented only for the PMABB

model, although the HMBB model :.r'll:!ﬂ,i competitive performance.

The reservoir performance-yield relationships obtained are presented for the existing
reservoir storage capacity of 732 Mm® of Dharoi reservoir, using the historical fiow
sequence as well as the three long synthetic sequences generated from the three
periodic stochastic models considered. The actual live storage capacity of the Dharoi
reservoir (732 Mm’} would yield a volume reliability of nearly 83% for 75% yield,
while it would decrease to a value of 77.3% for B5% yield. If the same volume
reliability of 83% is to maintained for an Increased yield of 85%, than the siorage
capacity is to be increased 1o 1000 Mm®, which will require a reservoir storage

capacity expansion.

The decrease in resilience with increase in vield is observed to be small. Likewise, the
increase in the resilience with increase in the storage capacity (for the given yield), is
also negligible, the reason being: the decrease in the number of events (decrease in the
vahe of the numerator) is nearly proportional 1o the decrease in the number of failure

periods (decrease in the value of the denominator).

.4 Optimal Hedging Ruoles for YWater Supply Reservoirs
A multi-objective optimization framework has been developed to evaluate optimal
hedging rules, This employs NSGA-Il, an efficient mulii-objective genetic

algorithm technigue that can handle constrained formulations. The

158



evaluation of the non-dominant solutions on the trade-off surface between
the conflicting objectives of minimization of vulnerability and minimization of
shortage ratio helps us to compare the performance of the different hedging

rules under water shortage conditions.

A new hedging rule has been proposed in the present study which is more
generic than the discrete hedging rule ond the modified two-point hedging
rule. From the resufts of the optimal hedging studies done using the Dharol
reservoir data, the proposed hedging rule is shown 1o produce efficient non-
dominant fronts containing well-distributed non-dominant solutions, The
results are found to be consistent for moderate as well as highly critical water
supply conditions. The compromising hedging policies obtained using the
proposed rule is shown 1o vield a good number of trade-off solotions ihat
exhibit good compromising performance with regard 1o the different reservoir

storage performance indicators.
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APPENDIX -1

Enm Euﬂg Il: Strmmlluw Sumhm nndll: 1|||'."|:t|:r Uu Etari:l:ln, gh't:u tI:l
SEEY istorical streamflow data measured at a site;

The executables of the files have to be run in the following order:

Step-1: First Synthetic replicaies by Maiched-block booistrap have to be generated by
executing the file "mabb.exe” (created from mabb.cpp). Results get stored in the file
"synth.dat".

Program File: MABB.CPP

Executable File; MABB exe

Input Files: apple.dat, mabb.dat (for runs=1), mabb-par.dat, replno.dat
Output Files: stat.det, synth.dat, check.out, matchbb.dat

apple.dat: This file contains historical record of streamilows. The values are arranged such
that cach row has the appropriate number of multi-season flow records corresponding to one
typical water year (12 records for monthly streamflows).

mabb-par.dat: This file has five entries.

Row 1: Tt contains & value for the number of innovation series that have to be dispensed o
the start of simulation.

Row 2: 1t contains the value of bum-in period, in years. Size of each synthetic replicate
(innovation) is cqual to the sum of length of the historical reeord and bum-in period.

Row 3: It contains the value of neighbourhood parameter “w™, which iz used for
computing bandwidth { Bandwidth=2w+1)

Row 4: It contains either 1 or 0 for the option “runs™
If rans=1, the program would resd block sizes from mabb.dat file

If runs=0, the program would make user specify the block sizes
Row 5: It contains replicate size, in years
replno.dat; This file has two numbers,

The first number denotes the number of synthetic replicates to be generated by the program.

The second number denotes the number of lags to be considered for computation of
correlation structure. The second number is not uscful for synthetic sequence generation. It s
nseful st a later stage while campuling statistics for replicates.

mabb.dat: The number of within year blocks and the sizes of each of the blocks have to be
entered in this file.



For example, if there are 12 within-year blocks each of size | year, the following values have
to be entered in the file,

Eiiitriniinig
If there are 5 within-year blocks of size 2, 4, 3, 1, 2 months, then, the entries will look like:

324312

stat.det: The cutput file shows the summary statistics (mean and standard deviation)
computed for the synthetic streamflows computed for each period/season. This helps in
making a quick check if the streamf{low data generated are in order and the basic summary
statistics of the historical streamflows are statistically reproduced.

synth.dat: Cutpul file containing synthetic replicates obtained using the non-parametric
technigue Matched-block bootstrap.

Owtput files that can be discarded; check.out, matchbb. dat
check.out; is used for checking
mustehbh.dat: ig useful in

Step-2: Next, execuiable file created from “perturber.cpp™ program "pertur—1.exe" has to be
executed 1o perturb svnthetic replicates that got stored in "synth.dat" file created in the
previous step. The perturbed synthetic replicates are overwnitten in the file "synth.dat”, The
current “synth.dat” file contains the required synthetic streamflow replicates.

For example, consider that 500 synthetic replicates are gemerated. In such a case, the
“gynth.dat” file created will contain 501 sets. The first set is historical record (echo-printed
for checking), with number of vears written in fromt of 1. The following 500 sets contain
synthetic streamflow replicates, with the replicate number written in front of them. Note that
Lhe replicates are numbered as: 0, 1, 2,.. . 488, 499,

Program File: Perturber.cpp
Exccutable File: Perturber exe
Input Files: apple.dat (contains historical data)

synth.dat (contains synthetic replicates from MABB program)
perturb.dat {contains user preference for pertubation)

Output File: synth.dat (contains historical streamflows and synthetic streamflow
replicates generated using PMABR).

Perturb.dat: The file has four eniries,
Row 1: Lower limit of perturbation (1-8). For example, if & = 0.10, 1-5 = 0.90
Row 2: Upper limit of perturbation (1+8). For example, if 6 = 0.10, 1 +8=1.10
Row 3! Interval size (for Incrementing)
Row 4: Number of intervals between lower and upper limits of perturbation. Example, if
interval size is 0.01, the number of intervals between lower and upper limils is
equal to (1.10-0.90%0.01 = 20.



Step-3:

The synthetic streamflows generated in Step-2, need o be evalualed for the model

performance in terms of:

] ability to reproduce the basic summary statistics (at multi-season and aggregated
levels), marginal distributions (at mulii-season and aggrepgated
levels);

i) ability to preserve the dependence structure in respect of a number of serial
correlations specified (multi-scason and aggregated annual levels), siate-dependent
carrelations (indicative of non-linear dependence);

i) ability 1o accurately predict the reservoir storage eapacity corresponding to various
demand levels (expressed as percent of mean annual Mow); and

iv)  ability to accurately predict the critical and the mean drought {run) characteristics
corresponding to various truncation levels (expressed as percent of mean annual
flow).

For evaluating the performance of the model, the following files from the PMABB (Main)
folder are fo be pasted to the STATISTICS folder (sub-folder):

MABB.DAT; ii) PERTURB.DAT; iii) APPLE.DAT: iv) SYNTH.DAT

The file RUN.DAT in the subfolder STATISTICS has to be madified by the user,
correspomding 1o the flow data set 1o be modeled.

Now, the progrim SEAS PRO can be executed.

Program File: SEAS PRO.cpp
Execcutable File; SEAS PRO.exe

Input Files: apple.dat, mabb.dat, perturb.dat, REPLNO.dat, RUN. dat, 5YNTH. dat

Output File: STATE.gen, seascorr his, seasmean his seasstd his, seasskew his, anncorr his,
cap.his, abovbwd. his, abovfwdhis, belobwdhis, belowfwdhis, event nohis, marlhis,
mars.his, merlhis, mershis, unitvoldat, replecomr.dat, anncomdat, REPLDEV.dat,
REPLMEAN.DAT, REPLSKEW.DAT, quantiledat, EVENTdetdast, MARLderdat,
MASdet dat, MERLdet.day, MERSdet.dat, check.det, histstat.det, capdetal.out, correlout,
filter.out, sefilter.out, summary.out, detailout, grijunkl.out, grijunk2.out, statecor.out,
STATEDET.out, abovbwd.grt, aboviwd.grt, belobwd.qri, belofwd.qrt, cap.qr, events.gr,
marl.grt, mars.qrt, merl.qrt, mers.qgrt, repleorr.qr, repldev.qn, replmean.grt, replskew.gr

Summary of Useful Chtput Files:

1. FILTER.out o Mean, standard deviation, skewness and serial correlations (up to 7
lags) — historical statistics, mean synthetic statistics are printed at
periodic level

o Mean, standard deviation, skewness and serial correlations (up 1 7
lags) — historical statistics, mean synthetic statistics are printed at



2. SCFILTER. out

3, Quantile Files

anmal level

s Reservoir storage capacity — for each demand level, historical value,
mean synthetic value, standard deviation of synthetic value; R-Bias
and R-RMSE of storage capacity

« Drought Statistics (mumber of runs, maximum run length |, average
run length, maximum run sum, average run sum) for each truncation
level - historical value, mean synthetic valoe, standard deviation of
synthetic values, percent exceedance of historical value.

» Lag-one state-dependent correlations (above and forward, above and

backward, below and forward, and below and backward) periedic
level — historical value, mean synthetic value, standard deviation of
synthetic values

# Mean synthetic flow statistics and gquantiles (minimum, 5 percentile,

25 percentile, median, 75 percentile, 95 percentile and maximuni) of
cach of the statistics are printed in these files.

These files are identified by the extension “grt™.

¢ Mean — REPLMEAN.QRT, Standard deviation - REPLDEV.QRT,
Skewness — REPLSKEW.QRT, Comelations —-REPLMEAN.QRT,
Stute dependent correfations — ABOVBWD.QRT, ABOVFWD.QRT,
BELOBWD.QRT, BELOWFWD.QRT

o Reservoir Storage - CAP.QRT

« Drought Characteristics - EVENTS.QRT, MARL.QRT, MARS.OQRT,
MERL.QRT, MERS.QRT



COMPUTATION OF STATISTICS

The listing of the various input files required to run and the various output files that
will be generated from the different source programs that are used to compute a variety
of streamflow statistics, including the validation (water-use) statistics (reservoir storage
capacity and critical and mean drought characteristics) for the historical as well as the
synthetic streamflows is given below,

Statistics:
STAT.CFP

COMPUTATION OF SUMMARY STATISTICS AND SERIAL CORRELATIONS OF
MULTI-SEASON (PERIODIC) FLOWS
INPUT FILES : SYNTH.DAT, MABB.DAT, PERTURB.DAT
OUTPUT FILES : FILTER.OUT (APPENDED), SUMMARY.OUT,
CORREL.OUT{NOT USEFUL), SEASMEAN.HIS, SEASSTDV HIS,
SEASSKEW.HIS, SEASCORR.HIS, REPLCORR.DAT, REPLNQ.DAT

Estimation of Quantiles of S Statisti

QUARTDAT.CPP

PREPARATION OF DATA FILES FOR ESTIMATION OF QUANTILES OF SUMMARY
STATISTICS

INPUT FILE : SUMMARY.OUT (OUTPUT OF STAT.CPP)

OUTPUT FILES: REPLMEANDAT, REPLDEV DAT, REPT SKEW.DAT

MEANQRT.CPP
COMPUTATION OF QUANTILE VALUES FOR MEAN FLOW OF PERIODIC DATA

INPUT FILES : REFLMEAN.DAT, REFLNO.DAT, SIZEDAT
QUTPLUT FILE : REPLMEAN.QRT (APPENDED)

SDPEVQRT.CFPP

COMPUTATION OF QUANTILE VALUES OF STANDARD DEVIATION OF
PERIODIC FLOWS

INPUT FILES  : REPLDEV.DAT, REPLNO.DAT, SIZE.DAT

QUTPUT FILE : REPLDEV QRT (APPENDED)

SKEWQRT.CPP
COMPUTATION OF QUANTILE VALUES FOR SKEWNESS OF PERIODIC FLOWS

INPUT FILES  : REPLSKEW.DAT, REPLNC.DAT, SIZEDAT
QUTPLUT FILE : REPLSKEW.QRT (APPENDEL)



ANNCHECK.CPP

COMPUTATION OF SUMMARY STATISTICS OF ANNUAL FLOWS FROM PERIODIC
FLOWS

INPUT FILES : SYNTHDAT, SIZE.DAT, REPLNO.DAT, UNITVOL.DAT
QUTPUT FILES : CORREL.OUT, ANNCORR HIS, ANNCORR.DAT,

SEASMEAN.HIS, SEASSKEW HIS, SEASCORRHIS, SEASSTDV . HIS;
REPLMEAN.DAT, REPLDEV.DAT, REPLSKEW.DAT, FILTER.OUT

Quantile Estimation for Correlation Structure:

CORRQRT.CPF

COMPUTATION OF QUANTILE VALUES FOR CORRELATIONS OF PERIODIC
Eﬁ’iﬁ“ FILES: REPLCORR.DAT, SIZE.DAT, REPLNO.DAT, ANNCORR.DAT
QUTPLT FILE : REPLCORR.QRT (APPENDED)

Computation of State-dependent Correlations:

Pre-processing of Replicates:

STATECOR.CPP

PROGRAM FOR COMPUTATION OF STATE-DEPENDENT
CORRELATIONS

INPUT FILES - SYNTH.DAT, REPLNO.DAT

QUTPUT FILES : STATE.GEN, STATEDET.OUT

Cire the data inio various & i iy

STATCORL.CPP

PROGRAM FOR COMPUTATION OF STATE-DEPENDENT
CORRELATIONS
INPUT FILES : SIZE.DAT, REPLNO.DAT, SYNTH.DAT, STATE.GEN
QUTPLUT FILES + STATECOR OUT, SCFILTER.OUT,
ABOVFWD.QRT, BELOFWD.QRT, ABOVBWDL.QRT,
BELOBWD.QRT,
ABOVFWD.HIS, BELOFWD.HIS, ABOVBWD.HIS,
BELOBWDLHIS

Computation of Cross-correlations:

Processor for the Periodie Cross-correlotions:




CROSSPRO.CPP

Computation of Cross-correlations
CROSSCOR.CPP

PROGEAM FOR THE COMPUTATION OF CROSS CORRELATIONS OF
PERIODIC STREAMFLOWS

INPUT FILE : SYNTH.DAT

OUTPUT FILE : CROSS.GEN

SUBSEQUENT FILES REQUIRED ; CROSPLUS.CPP, CROSSGRT.CPP

CROSPLUS.CPP

PROGEAM FOR THE COMPUTATION OF CROSS CORRELATIONS
MAIN JOR : FURTHER PROCESSING OF THE OUTPUT FROM
CROSSCOR.CPP
INPUTT FILES : CROSS.GEN (Replicate-wise cross-corr. details),
REPLNO.DAT
QUTPUT FILES :
Main Cutput Files:
CROSSCOR.OUT (Preservation of Hist, values)
CROSCORR.ONT (Quantiles for box-plat)

Intermediate Files:

CRSJUNKLQNT (M=an Valoes of various cross-correlntions)
CREJUNKZ.QNT (Quantiles of various ¢ross-correlations)
CROSSCOR.HIS (Hist. values of Month-to-year cross-cotr. )
Additional File for Post-Processing:

CROSSQRT.DAT (Duta file for compuling Month-to-Year
Cross-00rrs, )

Compalation o nrifes of Cross-correlations:

CROSSQRT.CPP

COMPUTATION OF QUANTILE VALUES FOR CROSS CORRELATIONS
OF MULTI-SEASON (PERIODIC) DATA

INPUT FILES : CROSSQRT.DAT, REPLNO.DAT, SIZE.DAT

QUTPUT FILE : CROSSCOR.QRT (APPENDED)

TOYUPMAL.CFP

PROGEAM FOR SEPERATION OF MONTH-TO-MONTH CROSS-CORRELATION
QUANTILES BETWEEN MONTHLY FLOWS IN SUCCESSIVE YEARS
INPUT FILES : REPLCORR.QRT, TOYUPMA.DAT



OUTPUT FILES: TOYUPMA GEN, TOYUPMA.QRT

Prediction of Reservoir Storage Capaciiy:

SEQPEAK.CPP

SEQUENT PEAK ALGORITHM FOR DETERMINATION OF NON-FAILURE
CAPACITY FOR PERIODIC FLOWS

INPUT FILES :SYNTH.DAT, REPLNO.DAT, SIZEDAT

QUTPUT FILES : CHECK.DET, QUANTILE.DAT, CAPDETAL.OUT (APPENDED)

CAFMORT.CPP

COMPUTATION OF QUANTILE VALUES FOR STORAGE CAPACITY OF PERIODIC
DATA

INPUT FILES : QUANTILE. DAT, SIZE.DAT, REPLNO.DAT

OUTPUT FILE : CAP.QRT (APPENDED)

Annunl and Multi-season Droaght Analvsis
NEWRUN.CPP

PROGRAM FOR ANALYSIS OF ANNUAL & PERIODIC DROUGHT (RUN)
CHARACTERISTICS

INPUT FILES : RUN.DAT, SIZE.DAT, APPLE.DAT, SYNTH.DAT (REPLICA.DAT)

CQUTPLUT FILES: FILTER.OUT, EVENTS.ORT, MARL.QRT, MERL.QRT, MARS.QRT,
MERS.QRT, QRTIUNKL.DAT, QRTIUNKZ DAT, HISTSTAT.DET, DETAIL.OUT,
MARLDET.DAT, MERLDET.DAT, MARSDET.DAT, MERSDET.DAT,
EVENTDET.DAT, EVENT_NO.HIS, MARL HIS, MERL-HIS, MARS HIS, MERS HIS

NOTE : NP=1 DENOTES ANNUAL DROUGHT ANALYSIS
SYNTH.DAT IS THE DATA FILE FOR SINGLE-SITE MODELING

NP=12 INDICATES PERIODIC DROUGHT ANALYSIS
REPLICA.DAT IS THE DATA FILE FOR MULTI-SITE MODELING
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