
) 

' ) 

,) 

,) 

() 

0 
,J 

J 
z_) 

) 

\.) 

) 

\) 

\) 

~) 

1,) 

0 
1) 

') 

) 

u 
) 

' ) 

! ) 

() 

~) 

() 

1) 

~) 

\) 

') 

) 

') 

~) 

1 

FINAL COMPLETION REPORT 
on 

!fiii) 
c25~ 

RESERVOIR PERFORMANCE ANALYSIS USING 
STOCHASTIC STREAMFLOW MODELS 

Sponsored by 

Indian National Committee on Hydrology 
(Ministry of Water Resources, New Delhi) 

Submitted by 

Dr. K. Srinivasan 
Principal Investigator 
· and 

Dr. B.S Thandaveswara 
Co-Principal Investigator (Retired Professor) 

DEPARTMENT OF CIVIL ENGINEERING 
INDIAN INSTITUTE OF TECHNOLOGY MADRAS 

CHENNAI - 600 036 (TN) INDIA 

January 2010 



'( 

( 

( 

(_ 

c 
( 

, 

( 

( 

' 

( I 

( 

( 

' 
, 

FINAL COMPLETION REPORT 
on 

RESERVOIR PERFORMANCE ANALYSIS USING 
STOCHASTIC STREAMFLOW MODELS 

Sponsored by 

Indian National Committee on Hydrology 
(Ministry of Water Resources, New Delhi) 

Submitted by 

Dr. K. Srinivasan 
Principal Investigator 

and 

Dr. B.S Thandaveswara 
Co-Principal Investigator (Retired Professor) 

DEPARTMENT OF CIVIL ENGINEERING 
INDIAN INSTITUTE OF TECHNOLOGY MADRAS 

CHENNAI - 600 036 (TN) INDIA 

January 2010 

I 



r 

I 

Department of Civil Engineering 
Indian Institute of Technology Madras 

I . NAME AND ADDRESS OF THE INSTITUTE: 

Indian Institute ofTechnology Madras 
Chennai - 600 036. 

2. PI (NAME & ADDRESS) 

Co-PI (NAME & ADDRESS) : 

: Dr. K. Srinivasan 
Professor, 
Dept. of Civil Engineering 
liT Madras, Chennai - 600036 
Tel.: 044,.22574269 
E-mail: ksrini@iitm.ac.in 

Dr. B.S. Thandaveswara 
Retired Professor (retired from service on 
30-th June 2005) 
Dept. of Civil Engineering 
liT Madras, Chennai - 600036 

3. TITLE OF THE SCHEME : Reservoir Performance Analysis Using 
Stochastic Streamflow Models. 

BROAD AREA OF RESEARCH 
SUBAREA 

:Water resources Planning & Management 
:Reservoir Perfonnance Analysis 

4. FINANCIAL DET AIS - PROJECT DATA 

Date of Start 09/0411997 Total cost of project : Rs. 6,30,000 
(MOWR No. 15/1/96-R&D/229 dt. 07/02/ 1997) 

Amount Released: Total: 4.14lakhs in two instalments. 

I instalment of the same, Rs.2.20 lakhs was released in Feb. I 997. 

II instalment of the grant for the above scheme has been recently effected by 
MOWR through a demand draft for an amount ofRs.l ,94,000/- DD No.992919 
dt. 24.11.2004 

Unspent Balance at the end ofthe project period: Rs. 59159.00. 
Return of the Unspent balance: ADD for Rs. 59159/- bearing number 023188 
dated 01 /09/2006 was returned to the MoWR from liT Madras. 



5. ORJGINAL OBJECTIVES OF PROPOSAL 

I. Development of a versatile user-friendly software for periodic stochastic 
modeling of river flows, with built-in decision-aids at various stages of 
modeling. 

II. Using the stochastic model fitted, large number of similar flow sequnces 
would be generated, which would be useful in : (a) fixing the required 
capacity of a reservoir being planned; (b) evaluating the performance of any 
existing reservoir system, for various existing and projected target demands 
and different operating policies. 

III. Establishing trade-off relationships amongst the performance indicators such 
as reliability, resilience and vulnerability for a few existing systems, for 
standard operating policy and a few selected hedging policies. 

IV. Construction of reservoir storage-performance-yield (S-P-Y) relationships and 
isoperformance lines for selected operating policies for reservoir systems. 

V. Demonstration of the practical usefulness of these tradeoff relationships 
developed in making decisions regarding reservoir planning, design and 
operation. 

6. No changes in the primary objectives during the operation of the scheme. 

7-10 and I4: Have been dealt with in detail in the 208-page report enclosed. 

II. No field tests were relevant to the project and hence not conducted. 

12. The source programs developed for Periodic Stochastic Modeling ofStreamflows, 
the executables, the sample input and output files required to run the programs, 
and the documentation regarding the above are provided in a CD (soft copy). 

13. There may not be any possibility of patents/copyrights since the work is nut 
product -oriented. 

Date: 3I-01-20IO 

Remarks of INC 

k-~ 
(lOrFiM-,SJUNIV ASAN. 

Pr" in~l Tn· a;)~/6fe .. or ~nvlfr~HmtrttaY~~Re•ourcet Engg. Dlv. 
Oepartll\ent of Civil Easlneertng 

lnclian ln~tltute of TecbnoloJY Madr.. . 
CheQAtl-600 036, la4la 

Signature & Seal ofthe INC Member-Secretary 



r 

CHAPTER 1 

INTRODUCTION 

Traditionally, linear autoregressive moving average (ARMA) models of Box-Jenkins 

type have been used to model streamflows at single/multiple sites at the annual/periodic 

levels. The popularity of linear ARMA models for hydrologic time series analysis may be 

due to their simplicity and the availability of a well-developed modelling framework in 

the statistical literature for stationary processes and the availability of standard software 

packages. In case of parametric models, bias corrections done to unbias skewness and/or 

correlations, estimated from small size samples, often cause some other undesirable 

effects in the synthetic replicates generated. Transforming the non-normal historical 

flows to normal, may lead to distortion of the correlation structure in the generated flows. 

Moreover, the traditional parametric modeling framework directs the researcher's 

attention towards an efficient estimation of model parameters under a certain metric for 

the selected model form. Due to these limitations, researchers are attempting to propose 

alternative models that can perform better in modeling the streamflows. 

Recently, Srinivas and Srinivasan (2000, 2001) have introduced the post-blackening 

approach (Davison and Hinkley, 1997) for stochastic modeling of streamflows that 

exhibit both linear and nonlinear dependence present in the streamflow data. Their model 

is basically a hybrid model that blends a linear parametric model with the moving block 

bootstrap (MBB), a non-parametric model. Although it is a certain improvement over the 

traditional ARMA models, it requires further improvement in capturing the non-linear 

effects. With a view to address this limitation, it may be worthwhile to go for completely 



data-driven models. Accordingly, the Artificial Neural Network (ANN)-based hybrid 

model is being proposed in this study for modeling the kind of annual streamflow data 

that exhibit a complex dependence structure, which is a blend of two non-linear data-

driven models, namely, ANN and Moving Block Bootstrap (MBB). 

Seasonality of streamflow data adds a degree of complexity to the selection of an 

appropriate stochastic model to fit the data. However, if the autocorrelation structure of 

the observed data exhibits significant periodicity, then seasonal models that explicitly 

incorporate a periodic dependence structure must be used (Rasmussen et al., 1996). 

Varying degree of nonlinearity in the different periods/seasons, generation of 

streamflows owing to mixed precipitation mechanisms, add to the complexity further. 

t 

' 

Such characteristics of the geophysical time series make the modeling of multi-season 

streamflows a challenging task. 

An ideal single site multi-season synthetic flow generation model should aim to 

reproduce: the summary statistics (mean, standard deviation and skewness) and marginal 

distribution of observed flows at periodic and annual time scales; autocorrelation 

structure of flows at aggregated annual level; within-year and cross-year serial 

correlations; month-to-year cross-correlations; and non-linearity stationarity in the 

underlying dependence structure. In addition, it should provide sufficient variety in the 

stochastic simulations with a reasonable degree of smoothing and extrapolation. The 

motivation for the method of periodic streamflow modeling presented in this research 

work comes from a desire to develop a potential nonparametric stochastic model that is 
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effective in reproducing summary statistics, dependence structure and the salient features 

of marginal distribution without compromising on smoothing, extrapolation and variety 

in simulations. Such an ideal model is expected to be effective in predicting storage 

capacity and critical run characteristics that are of interest to the investigator. 

Based on storage capacity, inflow pattern and demand, the reservoir systems can be 

classified as over-year (or carry-over) and within-year systems. Within-year systems are 

sensitive to seasonal variations of both inflow and draft. Studies that model the within-

-. 
year Storage-Performance-Yield (S-P-Y) relationships are more realistic. However, these 

relationships are difficult to generalize due to the large number of parameters associated 

with periodic stochastic streamflow models. Reservoirs, in which filling and emptying 

phases do not take place on an annual basis, but over a number of years, are known as 

over-year reservoirs, in which over-year storage effects predominate. Whenever severe, 

long-stretched deficits (shortages) in water supply are to be handled in a river system, 

carry-over storages become important and high storage capacities are provided for the 

reservoirs in such systems. 

The operational performance of a water supply reservoir is usually expressed in terms of 

performance indicators that describe the failure characteristics, namely the frequency, the 

duration and the severity of failures. That is, reliability, resilience and vulnerability 

together characterize "risk" in the reservoir planning and operation context. The Storage-

Performance-Yield (S-P-Y) relationships are useful in identifying the sensitive ranges of 

storage capacity of the over-year reservoirs, with regard to performance characteristics; 

and in selecting between capacity expansion and demand management options, in case of 
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deficit water supply systems. Such relationships need to be developed for over-year 

reservoir systems, in general and on a case by case basis for within-year reservoir 

systems. 

During drought periods and even when drought is impending, effective demand 

management strategies must be devised to reduce the severity of shortage by distributing 

the deficits over longer periods. Hedging is one of the simple and common demand 

management strategies employed by water supply managers to reduce the severity of 

droughts. Hedging increases water stored in the reservoir by accepting small currents 

deficits to guard against unacceptable large deficits that may occur in future . Hedging 

rule decides the storage allocation of water across time to minimize the impact of the 

drought. 

Although there have been a number of hedging rules proposed in the literature, such as 

the discrete and the continuous hedging rules proposed by Shih and Revelle (1994, 1995), 

supply and demand based hedging rules such as the one proposed by Srinivasan and 

Philipose (1998), a relative evaluation of these rules and their adequacy in terms of 

performance during water shortages have not been analyzed in detail. There is also a need 

to obtain optimal hedging policies using each of these rules and investigate them by 

detailed evaluation by simulation. Also, it may be worthwhile to propose a new hedging 

rule that will improve the overall performance of both over-year and within-year water 

supply reservoirs. 

4 
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CHAPTER2 

NONLINEAR DATA-DRIVEN MODEL FOR ANNUAL 
STOCHASTIC STREAMFLOWS 

2.1 INTRODUCTION 

Traditionally, linear autoregressive moving average (ARMA) models of Box-Jenkins 

type have been used to model streamflows at single/multiple sites at the 

annual/periodic levels and the same have been described at length in texts on the 

subject (e.g., Salas et al., 1980; Salas, 1993; Loucks et al., 1981 ). The physical 

justification for the use of ARMA models in the context of modelling the annual 

stream flows is described in Salas et al. ( 1980). The annual stream flows are 

represented by mixed autoregressive and moving average processes. The flow 

recession during dry periods that may have significant persistence and small variation, 

can be represented by autoregressive (AR) processes. The high flows due to large 

rainfall and/or snowmelt could be represented through addition of the Moving Average 

(MA) component. The popularity of linear ARMA models for hydrologic time series 

analysis may be due to their simplicity and the availability of a well developed 

modelling framework in the statistical literature for stationary processes and the 

availability of standard software packages such as ST ATGRAPHICS ( 1984), IMSL 

( 1984), SAS ( 1988), W ASIM (McLeod and Hi pel, 1978), LAST (Lane and Frevert, 

1990), SPIGOT (Grygier and Stedinger, 1990), and CSUPAC 1 (Salas et al., 1992). 

However, there are a number of drawbacks of the Box-Jenkins type of models as 

pointed out by Lall and Sharma (1996), Tarboton et.al (1998) and Srinivas and 

Srinivasan (2000). Furthermore, in case of parametric models, bias corrections are 

often applied to unbias skewness and/or correlations, estimated from small size 

samples. These corrections in tum give rise to some other undesirable effects in the 
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synthetic replicates generated (for instance, unbiasing skewness may result m 

increased variance of the same; transforming the non-normal historical flows to 

normal, may lead to distortion of the correlation structure in the generated flows). 

Moreover, the traditional parametric modeling framework directs the researcher's 

attention towards an efficient estimation of model parameters under a certain metric 

(e.g., least squares or maximum likelihood) for the selected model form. On the other 

hand, the performance metric of interest to the hydrologist or the water resources 

planner need not be optimal, for the same. This is one of the main reasons to consider 

the usage of flexible, adaptive, data exploratory methods, instead. Moreover, classical 

ARMA models are optimal only under squared error loss and only for linear operations 

on the variables. While, the risk/loss functions associated with hydrologic decisions 

are known to be asymmetric. In addition, incorporation of parameter uncertainty into 

the parametric time series models (Stedinger and Taylor, 1982; Grygier and Stedinger, 

1990), is quite involved and not that simple to be understood or applied by practising 

hydrologists. 

Despite making a large family, all Box-Jenkins models are essentially of short-memory 

type; that is, their autocorrelation structure decreases rapidly with the lag time. Hence, 

such models are inadequate in stochastic hydrology, if the long-term persistence of 

hydrologic (and other geophysical) processes is to be modelled. This property 

discussed by Hurst (1951), is related to the observed tendency of annual streamflows 

to stay above or below their mean value for long periods. As a result, these model are 

not able to predict critical run characteristics efficiently. 
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Other classes of models such as fractional Gaussian noise (FGN) models (Mandelbrot 

and Wallis, 1969a,b,c), fast fractional Gaussian noise models (Mandelbrot, 1971), 

broken line models (Mejia et al., 1972) are more appropriate to model long-term 

persistence (Bras and Rodriguez-Iturbe, 1985, pp.21 0-280). However, FGN and FFGN 

models have several weak points such as parameter estimation problems, narrow range 

of autocorrelation functions that they can preserve, and their inability to perform in 

multivariate problems (Koutsoyiannis, 2000). 

While nonlinear models (Bendat and Piersol, 1986; Tong, 1990) can be used in place 

of the linear ARMA models, these nonlinear models require specifying the form of 

nonlinear dependence prior to the parameter estimation which may not be easy for the 

practitioner. Moreover, in a multi-site modeling context, this becomes a tedious 

exercise, especially if the model structure and the probability distributions that 

describe the flows at the different sites vary. From the practitioner's perspective, the 

key issues are reproducibility of the observed data characteristics, simplicity, 

dependability and robustness. Owing to the difficulties associated with the parametric 

methods in terms of parameter estimation, assumptions regarding the marginal 

probability distributions and the dependence structure of the variable of interest, 

nonparametric methods are becoming popular in stochastic hydrology in the last one 

decade. Readers are referred to Lall ~1995) for an overview of nonparametric 

applications to hydrology. 

The bootstrap (Efron, 1979) is the simplest nonparametric technique for simulating the 

probability distribution of any statistic. The use of bootstrap methods in time series 

analysis is receiving considerable attention in modern statistics, as documented by 

Lepage and Billard (1992), Efron and Tibshirani (1993), and Davison and Hinkley 
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(1997). KUnsch (1989) proposed the moving block bootstrap (MBB) for resampling 

dependent data. This technique consists of dividing the data into blocks of observations 

and resampling the blocks randomly with replacement. In this method, though the 

original dependence structure is preserved within the blocks, it is lost at boundaries 

between blocks (Davison and Hinkley, 1997). This poses difficulty in preserving the 

dependence structure present in hydrologic records, as the available sample sizes are 

small. Lahiri (1993) addresses the limitation of MBB in statistical literature. In 

hydrologic literature, Srinivas and Srinivasan (2000, 2001) bring out the inefficiency 

ofMBB in simulating streamflows at annual and periodic time scales. 

In the last decade, Lall and Sharma (1996) proposed k-nearest neighbor (k-NN) 

bootstrap for resampling dependent hydrologic data. Multivariate nearest neighbor 

probability density estimation provides the basis for the resampling scheme. A discrete 

kernel is used to resample from the successors of k-nearest neighbors of the 

conditioning vector (Rajagopalan and Lall, 1999; Sharma and Lall, 1999; Kumar et at., 

2000). The nearest neighbor bootstrap and its variations may be preferable if the data 

are plentiful, as in case of daily streamflow modeling (Lall and Sharma, 1996). The 

investigations by Srinivas and Srinivasan (200 1) report that for historical time series 

with strong dependence, the k-NN model does not simulate the run characteristics 

satisfactorily (validation statistics as per Stedinger and Taylor, 1982), plausibly due to 

inadequate preservation of higher lag serial correlations. 

A limitation. of the aforementioned NP methods is that simulations from these 

resampling methods can neither fill in the gaps between the data points in the observed 

record nor extrapolate beyond the observed extrema. In the last decade, kernel-based 

nonparametric methods were proposed for streamflow simulation (Sharma et at., 
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1997), streamflow disaggregation (Tarboton et al., 1998) and for generation of 

multivariate weather variables (Rajagopalan et al., 1997) with a view to alleviate the 

limitation of the bootstrap methods. However, these methods demand considerable 

computational effort for the estimation of bandwidth in higher dimensions. Moreover, 

the kernel methods suffer from severe boundary problems, especially in higher 

dimensions, that can bias the simulations (Prairie, 2002). 

Recently, Srinivas and Srinivasan (2000, 2001) have introduced the post-blackening 

approach (Davison and Hinkley, 1997) for stochastic modeling of streamflows that 

exhibit complex dependence. Herein, complex dependence refers to both linear and 

nonlinear dependence present in the annual streamflow data. The different segments of 

the data based on thresholds (such as low flow, medium flow and high flow) may 

exhibit different dependence structures within the segments as well as between the 

segments. The model proposed by Srinivas and Srinivasan (2000) is basically a hybrid 

model that blends a linear parametric model with the moving block bootstrap (MBB), a 

non-parametric model. In this modeling approach, partial pre-whitening of the 

streamflow data is done by the linear parametric model, followed by block 

bootstrapping of the residuals extracted. This kind of blending was done with a view 

to: (i) capture both short- and long-term dependence characteristics in the observed 

streamflow data that are important for the prediction of storage and drought related 

characteristics; and (ii) introduce some smoothing/extrapolation value in the synthetic 

simulations. Srinivas and Srinivasan (2000) report a better preservation of the 

dependence structure and the critical drought characteristics compared with linear 

parametric models for annual streamflow data that have complex dependence structure. 
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Nevertheless, results presented by Srinivas and Srinivasan (2000) (e.g. figures 14, 16, 

18, 20, 22 and 23) suggest scope for improvement in simulating the drought 

characteristics at various truncation levels (expressed as percent of mean annual flow). 

This is plausibly due to the complex dependence (defined in the previous paragraph) 

present in the streamflow data series not being modeled effectively by the linear 

parametric based hybrid model. We feel that such complex dependence present in the 

streamflow data can be more effectively captured by better modeling of the non­

linearities inherent in the streamflow data, which may be accomplished by completely 

data-driven models. This prompted us to go for the Artificial Neural Network (ANN) 

based hybrid model, which is a blend of two non-linear data-driven models, namely, 

ANN and Moving Block Bootstrap (MBB) for modeling the kind of annual streamflow 

data that exhibit a complex dependence structure. 

Artificial Neural Network (ANN) is a data-driven method of computation and 

information processing that takes advantage of mimicking the processes of biological 

neurons found in human brain. Over the last 2 decades, the ANNs are being 

successfully applied across a wide range of problem domains, as diverse as finance, 

medicine, engineering, geology, hydrology and physics (e.g. Buscema and Sacco, 

2000; DeRoach, 1989; Gernoth et al., I 993). This data-driven technique is now widely 

accepted as a potentially useful way of modeling complex non-linear and dynamic 

systems, especially in situations where the underlying physical processes are not fully 

understood (Hsu et al., 1995) or where the nature of the event being modeled may 

display chaotic properties. The emergence of ANN technology has made a mark in the 

field of hydrology, wherein uncertainty rules. Some of the earliest applications of 

ANN to hydrology were reported by Daniel (I 991 ), who also suggested further 
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possible scope. The approach has since then been used in various hydrological studies 

(Hsu et al., 1995; Dawson and Wilby, 1998; Cam polo et al., 1999; Sudheer et al., 

2002; 2003; Sudheer and Jain, 2004; Jain and Srinivasulu, 2004, to mention a few). 

For a comprehensive review of ANN applications to hydrology, the reader is referred 

to the reports of ASCE Task Committee (2000a, b), Maier and Dandy (2000) and 

Dawson and Wilby (200 1 ). 

It is observed that most of the previous works related to ANN reported in the 

hydrologic literature have addressed river flow forecasting problems, since this data­

driven technique is very much suited for function approximation when the underlying 

physics of the process is unknown. Rivera et al. (2002), has reported the usage of ANN 

for stochastic streamflow generation, although not many works addresses this 

application. In their work, the hybrid model adopted for multi-site stochastic 

streamflow generation using ANN is very similar to the traditional modeling approach 

with the exception that the linear parametric model in the traditional modeling 

approach is replaced by an ANN. The results presented in Rivera et al. (2002) indicate 

that though the model offers marginal improvement over the linear parametric model 

(AR(2)) in predicting various long-term validation statistics such as drought and 

storage characteristics, it behaves in a very similar way as the linear parametric model. 

It is evident from the Fig. 9 presented in Rivera et al. (2002) that this multivariate 

ANN based hybrid model is not able to capture the jumps and variations in the drought 

characteristics with regard to various truncation levels (that define the streamflow 

drought) in case of both the examples considered. This observation indicates that the 

ANN alone may not be able to capture the entire dependence information present in 

the data, thus leaving some information (including non-linearities) hidden in the 
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residuals. We feel that this residual infonnation can be effectively modeled by 

employing a nonparametric model such as the moving block bootstrap that is expected 

to capture the weak linear as well as the nonlinear dependence and any distributional 

infonnation retained in the residuals. This leads to the focus of the current research 

work, namely, streamflow generation using a hybrid data-driven model. A later section 

of this chapter illustrates with the help of three unregulated annual streamflow records 

(that exhibit complex dependence structure) that the effective blend of the two data­

driven models referred, enables efficient simulations of the long-tenn storage and 

drought-related characteristics. 

2.2 HYBRID MODEL DEVELOPMENT 

2.2.1 ANN Based Hybrid Model (ANNHM) 

As discussed earlier, the basic idea behind the ANNHM model is to blend two 

nonlinear data-driven models (ANN and MBB). The choice of network type and its 

functioning as well as training are discussed in this section. The algorithm for blending 

the MBB with ANN is also presented. 

2.2.l.lChoice of network type 

The most popular ANN architecture in hydrologic modeling is the multi-layer 

perceptron (MLP) trained with the back propagation (BP) algorithm (ASCE, 2000a). 

Although MLP can produce accurate results, it has several drawbacks, such as a long 

training time, and the BP algorithm being a gradient descent method may converge to a 

local minimum (Sudheer and Jain, 2003) resulting in a suboptimal solution to the 

problem. Moreover, when the data are limited, the BP algorithm may not lead to good 

generalization properties for the network. Another popular ANN architecture, radial 
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basis function (RBF) network can be trained in a shorter ime and has fewer parameters. 

In· contrast to the MLP, the RBF network has the nonlinearity embedded in the transfer 

functions of its hidden-layer neurons, which makes the optimization of tunable 

parameters a linear search. An RBF network can offer approximation capabilities 

similar to those of the MLP (Chen et al. 1991 ), provided the hidden layer of the RBF 

network is fixed appropriately. Some studies (e.g., Fernando and Jayawardena, 1998; 

Sudheer et. al, 2002) report that RBF predicts river flows more accurately than MLP. 

2.2.1.2 RBF network 

The RBF networks operate quite differently from the multi-layer perceptrons (MLP) 

that commonly use sigmoid type transfer function. While the structure of the RBF is 

identical to the MLP, the RBF simulates the unknown function using a network of 

radial functions in the hidden layer. The nonlinearity within an RBF network can be 

chosen from a few typical nonlinear functions, and the most common choice is the 

Gaussian function. The choice of nonlinearity of RBF nodes is not crucial for the 

performance of the method (Powell, 1987). The hidden layer in an RBF performs a 

fixed nonlinear transformation with no adjustable parameters and it maps the input 

space onto a new space. The output layer then implements a linear combination on this 

new space and the only adjustable parameters are the weights of this linear combiner. 

These parameters can therefore be approximated using the linear least squares method, 

which is a significant advantage of using this network (Sudheer et al., 2007). 

Mathematically, in an RBF, for the pth input pattern XP, the response (assuming 

Gaussian function) ofthejth hidden node Oj is of the form 

n 
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OJ- I 2 

2aj 
(2.1) 

where 11~1 denotes the standard Euclidian norm; Clj is the center of the /h radial basis 

function./{.); a 
1 

is the spread of the RBF that is indicative of the radial distance from 

the RBF center within which the function value is significantly different from zero. 

The network output is given by weighted summation of the hidden node responses at 

each node in the output layer. The output for kth node on the output layer z pt is 

computed as: 

L 

zpk = Io1 wkJ 
j=l 

(2.2) 

where wlr; is the weight connection between hidden and output nodes and L is the 

number of radial basis functions. 

2.2.1.3 Training an RBF network 

Training an RBF network involves determining the radial basis functions on the hidden 

layer nodes and the output layer weights. Determining the RBF function involves 

finding suitable RBF centers and spreads. Ideally, the RBF networks require that there 

be as many RBF centers as data points, which is rarely practical in most of the 

applications as the number of data points is usually large. This also implies 

unnecessarily large networks and extremely long computation times. Hence many 

applications suggest optimizing the number of RBF centers that produce the output 

within reasonable tolerance. Consequently, a variety of techniques have been 

suggested to optimize the number of RBF centers (e. g. Moody and Darken, 1989; 

Chen et al., 1991 ). The orthogonal least squares (OLS) algorithm proposed by Chen et 
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al. (1991) has been used in the current research. This algorithm was implemented using 

the Neural Network Toolbox ofMATLAB. 

The OLS method involves the transformation of the set of regressors into a set of 

orthogonal basis vectors. This enables the calculation of the individual contributions to 

the desired output from each basis vector. It works based on the principle of 

maximizing the explained variance of the output by the regressor. This is achieved by 

progressively adding one new basis vector (regressor) during every cycle of the 

iteration. The algorithm is terminated when the residual error is within the chosen 

tolerance limit. This gives rise to a subset model containing significant regressors less 

" than the number of patterns presented to the network. For a detailed description of 

OLS algorithm, readers are referred to Chen et a!. (199 I). 

ANNHM Algorithm 

In brief, the steps involved in the ANN based Hybrid Model are as follows (Sudheer et 

al., 2007) 

(i) Consider y1, t = I, 2, ... ,n be the annual streamflow series. Scale the annual 

flow series to fall within the band [0, I] using any appropriate scaling 

function. The scaling function used in the current study is: 

Yt(s) = (y ) · ( ) max 1•Y2•···•Yn - mm YPY2, ... ,yn 

y,- min(ypy2 , ••• ,yn) 
(2.3) 

in which y,<s> represents the scaled annual flow series. 

(ii) Develop an RBF network to the scaled annual streamflow data to extract 

the dependence structure partially, adopting the procedure described earlier: 

Yt(s) = {w}yH(s) (2.4) 
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in which {w} represents the RBF network parameter matrix in terms of 

weights ( wkJ ), centres (fh) and spread (a 1 ). Herein, .Y,<•> is the RBF 

computed scaled annual streamflow. Herein it is to be noted that the idea of 

ANNHM is not to capture the entire dependence structure of the flow data 

series by RBF itself, but to employ RBF for partial extraction of the 

dependence structure. The remaining part of the structure (weak structure) 

present in the residuals is expected to be captured by MBB. Hence a 

rigourous validation of the RBF model is not warranted. However, a 

reasonable level of generalization property is expected at this stage. 

(iii) Convert Yt<•l into actual flow units 
A 

y, by performing inverse 

transformation of the scaling function used in step (i). 

(iv) Compute the residuals from the historic sequence, 

&t(c) = Yt - Yt (2.5) 

(v) Obtain the simulated innovations&; , .... , & ; by bootstrapping &,<,'l using the 

moving block bootstrap (Ktinsch, 1989) method. The appropriate block size 

to be used for resampling the weakly dependent residuals is to be decided. 

(vi) Considering the starting value of generated flow series, Yo(gl , to be the 

minimum of the original annual stream flow series (i.e. Yo<•> = 0 ), estimate 

the ·subsequent RBF computed scaled generated flow (Y.I<•> ) using the RBF 

network parameters. 

I.e. .Y'l(s ) = {w}yo(s) (2.6) 

Note that the starting value of Yo<.•> can be any arbitrary value, provided 

sufficient 'warm-up' period is chosen to ensure the stationarity of the 

generated data set. 
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(vii) Convert f I<•> into actual flow units y1<K> by performing inverse 

transformation of the scaling function used in step (i). 

(viii) Corresponding value of the bootstrapped innovation series { &; } is then 

added back to the generated streamflow estimated by the ANN model, to 

obtain the synthetic streamflows y 1<g> • Thus, 

YJ(g) = YJ(g) + c-; (2.7) 

(ix) Repeat steps 6 through 8 until the desired length of the synthetic 

streamflow series is reached. 

(x) Evaluate the performance of the ANNHM generated synthetic streamflow 

series using verification and validation statistics proposed by Stedinger and 

Taylor ( 1982). 

(xi) If the performance of the model is not satisfactory, then go to step (v) and 

change the block size used for resampling the residuals, and repeat steps (v) 

through (x). 

(xii) If the model performance is not satisfactory even after trying all the 

possible alternate block sizes, then go to step (ii) and tune the RBF 

structure and continue with steps (iii) through (x). 

2.2.2 Linear Parametric based Hybrid Model (LPHM) Algorithm 

The details of the model formulation of LPHM, which uses the post-blackening 

approach suggested by Davison and Hinkley (1997) can be found in Srinivas and 

Srinivasan (2000). However, a brief description of the algorithm for LPHM is 

presented in the following paragraph, assuming AR(l) to be the underlying parametric 

model (any other parametric model can be adopted in place). 
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(i) Fit a default AR(1) model to the centred historical streamflows YJ, ... ... ,yn 

(2.8) 

(ii) Estimate the residuals using the autoregressive parameter a estimated from 

the historical sequence: 

(2.9) 

(iii) Define the residuals centred around their mean as 

8 t(C) = &, - &, (2.1 0) 

where &, is the mean of the residuals £ 1 

. . 
(iv) Obtain the simulated innovations &0 , ••• ,EN by bootstrapping &,(c) using 

the MBB (Kiinsch, 1989) method. The appropriate block size to be used for 

resampling the weakly dependent, centred residuals is to be decided. 

(v) The bootstrapped innovation series { e;} is then post-blackened by 

applying the estimated model to the resampled innovations, to obtain the 

synthetic stream flows Yt 

(2.11) 

The starting value of y,ft:J is taken to be equal to e; itself (or it can be any arbitrary 

value). In this case also, the 'burn-in' or 'warm-up' period is chosen to be large enough 

to ensure that the subsequent values of the synthetic series are essentially stationary. 

2.3 EVALUATION OF THE MODELS 

When a stochastic stream flow model is to be used for water resources system planning 

and management, it is to be evaluated through a two-step process: (i) its ability to 

reproduce the summary statistics, marginal distribution, dependence structure of the 
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historical flows; (ii) its ability to predict the drought and the storage characteristics. 

These two steps are known as 'verification' and 'validation' of the stochastic model 

(Salas et al., 1980; Stedinger and Taylor, 1982). Accordingly in the current study, the 

means of the relevant statistics (mentioned above) have been computed over 1000 

synthetic streamflow sequences generated from ANNHM and LPHM, and compared 

with their historical counterparts. The variability of the statistics among the generated 

sequences is evaluated by computing the dispersion/spread of the statistics obtained 

from the 1000 synthetic sequences. The results ofthe evaluation of the two models are 

discussed in detail in a subsequent section. 

Herein, we wish to emphasize that as the synthetic series are not generated directly 

from the ANN models, their separate' evaluation is not performed extensively. This 

kind of evaluation is required only when the ANN model is directly employed for 

forecasting purpose. Nevertheless, ensuring a reasonable level of generalization 

performance is desirable. This is accomplished by ensuring that the relative root mean 

square error (RRMSE) statistic of the training and the validation sets are in the same 

order. In case of the linear parametric based hybrid model (LPHM), it may be noted 

that only a partial pre-whitening of the historical flows is done using AR(l ), which is 

followed by resampling of the residuals using moving block bootstrap technique. 

Hence, there is no need to separately evaluate the model performance at the pre­

whitening stage. 

2.4 CASE EXAMPLES 

The proposed ANN based hybrid model has been applied to three typical unregulated 

streamflow records; two data records taken from Yevjevich ( 1967) and the third data 
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set obtained from USGS (http://nwis.waterdata.usgs.gov/nwis/annual/). The 

characteristics of the three data sets are summarized in Table 2.1. The example data 

sets chosen represent different geographic regions, possess different record lengths and 

varying sizes of the drainage area, magnitudes of flow and skewness of flows. The 

historical streamflow time series of the three flow records are shown in Figs. 2.1 (a), 

2.1(b), and 2.l(c), respectively. 

Table 2.1 Annual flow data characteristics of rivers selected for the current study. 

Name of Name of State and/or Basin Record Mean Coefficient Skewness 

river station country area duration discharge of variation 

(km2
) (m3/s) 

Lake Albert Mongalla Sudan 442890 1904-1952 718.30 0.301 1.723 

Red Wahpeton ND, USA 10381 1944-2001 18.00 1.733 0.973 

Neva Petrokrepost USSR 271950 1859-1935 2588.20 0.163 0.437 

In the present research work, the ANN models for all the data series are developed 

using the classical procedure of splitting the data into training set (first 75% of the total 

data length) and validation set (remaining 25% of the total data length). The Gaussian 

function has been used as the radia1 basis function in the current study. The RRMSE 

statistics are of similar order for both training and validation statistics (0.2097 for 

training set and 0.2029 for validation set for Lake Albert; 0.6967 for training set and 

0.7023 for validation set for Red River; 1.9985 for training set and 2.1325 for 

validation set for Neva River). Thus error analysis shows reasonably good 

generalization property for the ANN models. The parameters of the ANN models are 

then frozen and used in developing the ANNHM models for the respective data series. 

The chosen final network architectures (in terms of input-hidden-output nodes) of the 

ANN models are 1-25-1, 1-32-1, 1-42-1 for Lake Albert, Red River, and Neva River 

respectively. 
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While developing ANNHM (and LPHM), the block size used for resampling of 

residuals extracted from the base model is varied from I to 15. Corresponding to each 

block size, one thousand replicates are generated. As mentioned earlier, the synthetic 

replicates from the ANNHM and the LPHM are evaluated based on the ability to 

reproduce the various statistics computed from historical flows such as summary 

statistics, marginal distribution, autocorrelation structure; and the preservation of 

critical and mean drought characteristics and storage characteristics. The results of the 

evaluation are discussed in the following section. 

2.5 RESULTS AND DISCUSSIONS 

2.5.1 Example 1: Lake Albert 

2.5.1.1 Reproduction of Summary Statistics 

The results of the preservation of summary statistics of the historical streamflows by 

the ANN based hybrid model (ANNHM) and the linear parametric based hybrid model 

(LPHM) for the Lake Albert for various block sizes are presented in Fig 2.2 for 

comparison. It can be observed from Fig 2.2 that both the models reproduce the mean 

of the annual flow series, while there is some bias in reproduction of the standard 

deviation at lower block sizes. A more significant observation from Fig 2.2 is that 

skewness is better preserved by ANNHM at all block sizes compared to LPHM. This 

indicates that ANNHM exhibits a tendency to capture the nonlinearities more 

effectively utilizing the potential of ANN. This inference is confirmed by the fact that 

ANNHM is able to capture the skewness present in the historical flows to a reasonable 

level, even at a block size of 1 (which is in fact an ANN model with random 

resampling of residuals). On the other hand, LPHM is able to improve the preservation 
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of skewness at higher block sizes, evidently due to the blending with the nonlinear 

nonparametric bootstrap method, MBB. 
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Fig. 2.1. Time series plots of annual stream flows of rivers a)Lake Albert b) River Red 

c) River Neva 
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2.5.1.2 Reproduction of Marginal Distribution 

The reproduction of the marginal distribution of annual streamflows is presented in 

Fig. 2.3 for the selected block sizes 12 and 7 respectively for LPHM and ANNHM. 

These block sizes are selected for the respective models based on their performance in 

terms of prediction of drought and storage statistics (discussed in later sections). It may 

be observed that LPHM reproduces the features of the marginal distribution 

reasonably, while providing some smoothing as well as extrapolation value. On the 

other hand, ANNHM being a completely data-driven model reproduces the features of 

the marginal distribution more closely, but offers less smoothing and little 

extrapolation value Fig. 2.3. This limitation needs to be addressed in future research. 

2.5.1.3 Preservation of Dependence (autocorrelation) Structure 

The preservation of the autocorrelation structure of the historical flows by both the 

hybrid models is presented in Figures 2.4 and 2.5 respectively, for different block 

sizes. It can be observed from Fig 2.4 that LPHM with block size I exhibits a similar 

behavior as a linear parametric model of order 1. The influence of the linear parametric 

model seems to be dominant on LPHM up to block size 5. However, from block size 

10 (used for resampling the residuals) onwards, the hybrid effect is noticed, indicated 

by the improvement in the preservation of the linear dependence structure. On the 

other hand, it may be seen from Fig 2.5 that ANNHM does not preserve the linear 

dependence structure at block size 1, which is effectively an ANN model with random 

resampling of residuals. However, with the increase in block size used for resampling 

of the residuals, ANNHM is found to improve significantly in terms of preserving the 

linear dependence structure. Nonetheless, LPHM exhibits a closer preservation of the 

linear dependence structure than ANNHM. 
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2.5.1.4 Preservation of Drought Characteristics 

In order to analyze the capability of the two hybrid models in terms of the preservation 

of drought characteristics of the historical flows, the following definitions of drought 

characteristics given by Yevjevich (1967) and advocated by other researchers (Sen, 

1991; Srinivas and Srinivasan, 2000) are adopted: A run is defined as an uninterrupted 

sequence of similar events (either surplus or deficit events with regard to a predefined 

truncation level), preceded and succeeded by different events. While an uninterrupted 

sequence of surplus is referred to as positive run length, an uninterrupted sequence of 

deficits is called negative run length. Truncation level is a level that separates the 

surplus and the deficit volumes of flow with regard to a pre-specified percent (or 

percentile) of the mean annual flow (MAF). In the current research, the truncation 

level is expressed as a percent of the mean annual flow (MAF). 

Figure 2.6 provides the schematic of the basic definitions of the drought 

characteristics. Maximum run length (MARL) is taken to be the greatest negative run 

length in a given streamflow sequence, for a pre-specified truncation level. Maximum 

run sum (MARS) is defined as the largest volume deficit (negative run sum) 

encountered in a given streamflow sequence, for a pre-specified truncation level. Mean 

run length (MERL) is computed as the mean of all the negative run lengths identified 

in a given streamflow sequence, for a pre-specified truncation level. Mean run sum 

(MERS) is expressed as the mean of deficit volumes (negative run sums) computed 

from all drought occurrences, in a given streamflow sequence, for a pre-specified 

truncation level. The maximum run length and the maximum run sum are referred to as 

critical drought characteristics in terms of duration and volume respectively. 

In this study, the truncation levels have been fixed at 50% MAF to 100% MAF at an 

incremental level of 5% MAF. Analyzing the run characteristics of the historic 
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streamflows at close intervals of truncation level, provides information regarding the 

variations (including jumps) in the run characteristics with regard to variations in the 

truncation level (Srinivas and Srinivasan, 2000). Ideally, a good stochastic stream flow 

model for use in drought planning and management is expected to preserve the critical 

and the mean drought characteristics defined above at all truncation levels specified. 

The average of the critical and the mean run characteristics corresponding to different 

truncation levels, computed over thousand replicates obtained from ANNHM and 

LPHM are presented in Figures 2.7-2.10, along with their historical counterparts for 

Lake Albert. 

It is observed from Fig 2.7 that with regard to the truncation levels, there are two 

distinct jumps in the historical MARL values. The LPHM fails to capture these jumps 

of the critical drought duration (MARL) even upto a block size of 10. With further 

increase in block size, some improvement in prediction is noted. However, the critical 

drought duration at intermediate truncation levels (70% and 75% MAF) are 

overestimated. Whereas, ANNHM is able to capture these jumps to some extent, even 

at a block size of I (albeit significant bias), even though the linear dependence 

structure is not at all preserved by ANNHM at block size I (Fig 2.5). It can be seen 

that the preservation ofMARL improves with further increase in block size and results 

in a good prediction at block size 7 for ANNHM (Fig 2.7). This demonstrates more 

effective blending of the two nonlinear models ANN and MBB, when compared with 

LPHM (which is a blend of linear parametric model and MBB). 
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Fig 2.6. Basic definitions of drought characteristics 
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The mean run length (MERL) computed from both the models is presented in Fig 2.8, 

which indicates that LPHM is not able to model the variations of the mean drought 

durations with increasing truncation levels. This can be plausibly attributed to the 

dominance of linear parametric effect in the LPHM. On the contrary, ANNHM is able 

to reasonably model the variations in mean run length with truncation levels from 

block size 5 onwards (Fig 2.8). Again, this can be attributed to the effective blending 

of the two nonlinear models. 

It is evident from Fig 2.9 (which presents the maximum run sum (MARS) of the 

historical streamflows), that both LPHM and ANNHM preserve the maximum run sum 

reasonably well from block size 7 onwards. Figure 2.10 depicts the preservation of the 

mean run sum (MERS) statistic by both the hybrid models. The inferior performance 

of LPHM is clearly seen at all truncation levels up to a block size of 5. Even at higher 

block sizes, the performance of LPHM is not satisfactory at a number of truncation 

levels. While, ANNHM is able to capture the variation of mean run sum stati stic at 

block size 5, and shows further improvement in performance at block size 7. However, 

it is to be noted that at higher block sizes (greater than I 0), ANNHM does not preserve 

the mean run sum statistic. 

With a view to compare and appreciate the spread of the critical and the mean drought 

statistics obtained from both the hybrid models, box plots of MARL, MERL, MARS 

and MERS are presented in Fig 2.11. The inter-quartile range is represented by the 

box. The limits of the upper and the lower arms indicate the 95 percentile and the 5 

percentile points respectively. For the comparison, the block sizes selected for LPHM 
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Fig 2.10 Comparison ofthe preservation of the mean run sum (MERS) between LPHM 

and ANNHM. River: Lake Albert. 
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Fig 2.11. Spread of critical and mean run characteristics - A comparison between 

Linear Parametric Hybrid Model (LPHM: L=l2) and ANN Hybrid Model (ANNHM: 

L=7). River: Lake Albert. The circle denotes the historical value and the darkened 

square indicates average value of the statistic over 1000 replicates. 
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and ANNHM are 12 and 7 respectively. This selection of block size was done 

considering the tradeoff between the bias and the spread of the above statistics. 

It is seen from Fig 2.11 that LPHM overestimates MARL at a few of the lower and the 

intermediate truncation levels, while it predicts the same well at higher truncation 

levels. Whereas, in case of ANNHM, the spread of MARL is limited at two of the 

intermediate truncation levels. Although the maximum run sum (MARS) has been 

preserved well by both the models, LPHM shows a better prediction at higher 

truncation levels. With regard to the prediction of the mean drought characteristics 

(MERL and MERS), ANNHM outperforms LPHM. A significant observation from 

Fig. 2.11 is that the zero values of all the historical drought statistics at 50% and 55% 

truncation levels are reproduced by ANNHM, while the same are overestimated by 

LPHM. Also, the jump in the historical drought statistics from 55% to 60% truncation 

level is better captured by ANNHM. From the above, it may be inferred that ANNHM 

is able to capture the nonlinearities inherent in data better than LPHM. 

2.5.1.5 Prediction of Reservoir Storage Capacity 

The simulations from the two hybrid models are further validated by testing their 

ability to predict reservoir storage capacity. The reservoir storage capacities required to 

cater to yields of 50% Mean Annual Flow (MAF) to 90% MAF (at 5% MAF 

intervals), are computed using the sequent peak algorithm (Loucks et al., 1981, p.235). 

The results are presented in Table 2.2 and Fig 2.12. It is to be noted that the relative 

bias in predicting the storage statistics at lower demand levels is high in case ofLPHM 

(Fig. 2.12) Moreover, the relative RMSE of storage capacity prediction is 
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phenomenally higher in case of LPHM compared to ANNHM (Table 2.2) because of 

the larger 

S oo ~ LPHM: L-12 
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Fig. 2.12. Prediction of reservoir storage capacity - A comparison between Linear 

Parametric Hybrid Model (LPHM: L=l2) and ANN Hybrid Model (ANNHM). River: 

Lake Albert. The circle denotes the historical value and the darkened square indicates 

average value of the statistic over 1000 replicates. 
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dispersion (Fig 2.12). It may also be noted from Fig 2.12 that the performance of 

ANNHM improves as the block size increases to 7. However, with further increase in 

block size, the spread of the storage statistic gets reduced, which is not desirable for 

design decision making. 

Table 2.2 Comparison of predicted storage characteristics by LPHM and ANNHM for 
selected block sizes. River: Lake Albert 

Demand(% 60 65 70 75 80 85 
MAF) 

LPHM, L·=12 -0.593 -0.231 -0.213 -0.161 -0.103 -0.085 
Relative Bias 

ANNHM, L=7 0.357 0.286 0.192 0.147 0.136 0.089 

LPHM, L=12 2.493 1.408 1.125 0.965 0.807 0.779 
Relative RMSE 

ANNHM, L=7 0.516 0.467 0.384 0.384 0.415 0.454 

L indicates the block size; MAF indicate mean annual flow 

2.5.2 EXAMPLES 2 & 3: Red River (USA) and River Neva (USSR) 

90 

-0.194 

-0.110 

0.915 

0.715 

The mean and the standard deviation of the historical flows are well preserved by both 

the models for both Red River and River Neva, which are not presented herein for 

brevity. The ANNHM reproduces the skewness of the Red River flows (0.973, see 

Table 2.1) even at a block size of I (mean skewness over I 000 synthetic sequences = 

0.924), while LPHM exhibits considerable bias (mean skewness over 1000 synthetic 

sequences = 0.808). Although the performance of LPHM improves as the block size 

increases (0.855 at L=6 and 0.869 at L=10), the model is not able to capture the 

skewness entirely. The better performance of ANNHM in preserving the skewness 

indicates that it has a tendency to capture the nonlinearities more effectively utilizing 

the potential of ANN, which confirms the earlier observations in the case of Lake 

Albert. In the case of River Neva, the historic flow series exhibits a low skewness of 

0.438 (see Table 2. I) and hence ANNHM is able to show only a marginal 

improvement in reproducing the skewness. It is to be mentioned that with regard to 
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the preservation of linear dependence, both models exhibit a similar behaviour as in 

the case ofLake Albert flows, and hence the same are not presented herein for brevity. 

2.5.2.1 Preservation of Drought Characteristics . 

The performances of ANNHM and LPHM in terms of their potential to preserve the 

drought characteristics when applied to the streamflow series of Red River and Neva 

River are presented in Tables 2.3 and 2.4 respectively. It is observed from Table 2.3 

that in the case of Red River both the models underestimate the MARL at higher 

truncations (85-1 00% MAF). This is mainly because both the models are not able to 

simulate the jump in historical MARL (4 to 8 years) from 80% to 85% MAF. In the 

case of River Neva (see Table 2.4), the MARL at higher truncations .(95%, 100% 

MAF) are significantly over estimated by LPHM. The preservation ofMERL is seen to 

be better for ANNHM at lower truncation levels (50-60% MAF) in the case of Red 

River (Table 2.3). On the other hand, in the case ofNeva River stream flows there is no 

significant difference (Table 2.4) between the two models in simulating MERL. 

It is observed from Table 2.3 that in the case of Red River the MARS is overestimated 

by LPHM at lower truncation levels, while ANNHM underestimates the same at higher 

truncations. It may be noted that the standard deviation of the predicted MARS (over 

the replicates) is higher for LPHM when compared with ANNHM. In the case of Neva 

River (Table 2.4) it is observed that ANNHM performs well at higher truncation levels 

r 
while it underestimates the MARS at intermediate truncation levels (75%, 80% MAF) . 

• On the contrary, LPHM is found to overestimate MARS at both intermediate and 

higher truncation levels in addition to high dispersion over the replicates. The 
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preservation of MERS is found to be better for ANNHM compared to LPHM in the 

case of both the rivers. 

Table 2.3 Preservation of historical drought characteristics - Red River (values in the 
parenthesis denote the standard deviation over 1000 replicates, TL denotes truncation 
level(%)) 

TL 50 55 60 65 70 75 80 85 90 95 100 

Maximum Run Length (years) 

Historical 2.00 2.00 4.00 4.00 4.00 4.00 4.00 8.00 8.00 8.00 8.00 

LPHM 2.34 2.78 3.61 3.72 3.93 4.02 4.72 6.97 7.66 7.86 7.99 

(0.7) (0.8) (1.2) ( 1.1) (1.1) (1.1) (1.2) (2.9) (3.0) (3.0) (3.0) 

ANNHM 2.02 2.30 3.55 3.71 3.83 3.98 4.44 6.5] 7.58 7.63 7.63 

(0.5) (0.6) ( 1.2) (1.1) (1.1) (1.0) (1.1) (2.5) (2.7) (2.7) (2.7) 

Mean Run Length (years) 

Historical 1.25 ] .3] 1.54 1.62 1.85 1.85 2.08 2.64 3.10 3.20 3.20 

LPHM 1.35 1.46 1.62 1.71 1.83 1.85 2.11 2.68 3.00 3.14 3.20 

(0.2) (0.2) (0.3) (0.3) (0.3) (0.3) (0.4) (0.6) (0.7) (0.7) (0.8) 

ANNHM 1.24 1.29 1.53 1.71 1.79 1.84 2.01 2.63 3.03 3.13 3.13 

(0.2) (0.2) (0.2) (0.3) (0.3) (0.3) (0.3) (0.6) (0.8) (0.8) (0.8) 

Maximum Run Sum (in I 06 m3
) 

Historical 231 288 345 446 559 673 786 1366 1593 1820 2047 

LPHM 271 336 437 529 628 736 900 1327 1605 1839 2078 

(114) (128) (152) (174) (199) (227) (265) (553) (643) (722) (813) 

ANNHM 197 250 348 445 546 649 791 1134 1448 1662 1875 

(62) (76) (90) (113) (140) (170) (204) (410) (519) (593) (670) 

Mean Run Sum (in 106 m3
) 

Historical 95 87 127 173 221 274 354 456 586 676 767 

LPHM 103 II 0 148 191 234 284 365 492 611 704 800 

(34) (30) (37) (43) (48) (56) (78) (126) (157) (182) (203) 

ANNHM 90 91 124 172 221 272 341 466 592 678 767 

(23) (22) (26) (31) (37) (44) (59) (98) (149) (171) (192) 
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Table 2.4 Preservation of historical drought characteristics- Neva River (values in the 
parenthesis denote the standard deviation over 1000 replicates, TL denotes truncation 
level(%)) 

TL 50 55 60 65 70 75 80 85 90 95 100 

Maximum Run Length (years) 

Historical 0 0 0 0 0 2.00 2.00 3.00 4.00 4.00 6.00 

LPHM 0 0 0 0.03 0.31 1.78 3.25 3.06 3.75 5.52 6.82 

(0.2) (0.6) (0.6) (0.7) (0.9) (1.2) (1.7) (1.7) 

ANNHM 0 0 0 0 0 1.65 2.07 2.79 3.36 4.63 6.19 

(0.6) (0.4) (0.6) (0.7) (1.1) (1.3) 

Mean Run Length (Years) 

Historical 0 0 0 0 0 1.50 1.57 1.56 2.20 2.73 3.08 

LPHM 0 0 0 0.03 0.30 1.40 1.54 1.66 2.01 2.64 3.17 

(0.2) (0.6) (0.4) (0.2) (0.3) (0.3) (0.5) (0.6) 

ANNHM 0 0 0 0 0 1.36 1.48 1.58 1.94 2.52 3.06 

(0.4) (0.2) (0.2) (0.2) (0.4) (0.5) 

Maximum Run Sum (in 106 m3
) 

Historical 0 0 0 0 0 2686 10848 19985 32228 44471 65677 

LPHM 0 0 0 31 532 4472 12510 23336 37397 57570 85544 

(244) (1371) (3354) (5343) (8364) (12508) (18848) (24950) 

ANNHM 0 0 0 0 0 1529 8730 18027 29982 44923 70691 

(554) (2268) ( 40 19) (6786) (l 01 07) (15242) 

Mean Run Sum (in 106 m3
) 

Historical 0 0 0 0 0 2157 4133 8745 15425 23561 32763 

LPHM 0 0 0 31 511 2810 5073 10256 16408 25417 34939 

(244) (1324) (1589) (1589) (2444) (3532) (5286) (7891) 

ANNHM 0 0 0 0 0 1224 4084 8796 14561 23002 33065 

(418) (1122) (1804) (2378) (3939) (6376) 

2.5.2.2 Prediction of Reservoir Storage Capacity 

It can be seen from Table 2.5 (Red River) that the LPHM consistently overestimates 

the storage capacity for all demand levels (60% to 90% MAF) in addition to a high 

degree of dispersion resulting in high values of relative RMSE. On the contrary, the 

41 



'\ 

ANNHM yields a good prediction of the storage capacity for demand levels 60% to 

80% MAF. However, for higher demand levels (85% and 90% MAF) considerable 

overestimation is seen resulting in high relative RMSE. In the case of River Neva 

(Table 2.6), it may be noted that the performance of ANNHM is better than LPHM at 

demand levels of 85% and 90% MAF. However, both the models do not seem to 

perform well at a lower demand level of75% MAF. 

Table 2.5 Comparison of predicted storage characteristics by LPHM and ANNHM for 
selected block sizes: Red River 

Demand (% MAF) 60 65 70 75 80 85 90 

LPHM, L·= 6 -0.363 -0.297 -0.216 -0.213 -0.324 -0.568 -0.461 
Relative Bias 

ANNHM, L= 6 -0.056 -0.022 0.008 -0.020 -0.124 -0.361 -0.330 

Relative LPHM, L= 6 0.629 0.593 0.541 0.562 0.743 1.082 1.027 

RMSE ANNHM, L= 6 0.289 0.308 0.331 0.380 0.511 0.801 0.841 

L indicates the block size; MAF indicate mean annual flow 
Negative and positive values of relative bias indicate overestimation and 
underestimation of the historical storage capacity respectively. 

Table 2.6 Comparison of predicted storage characteristics by LPHM and ANNHM for 
selected block sizes. River: Neva 

Demand (% MAF) 601 651 70# 75 80 85 90 

LPHM, L·=13 - - - -0.667 -0.171 -0.198 -0.361 
Relative Bias 

Relative 
RMSE 

ANNHM, L=13 - - - 0.431 0.188 0.084 -0.014 

LPHM, L=1 3 - - - 1.415 0.537 0.477 0.618 

ANNHM, L=13 - - - 0.477 0.290 0.222 0.248 

L indicates the block size; ; MAF indicate mean annual flow; # At the demand 
levels of 60%, 65% and 70% MAF, the storage capacity computed from historical 
flows is zero, hence the values in these columns can not be computed. 
Negative and positive values of relative bias indicate overestimation and 
underestimation ofthe historical storage capacity respectively. 

2.6 SUMMARY AND CONCLUSIONS 

A hybrid model that blends the two non-linear data-driven models, ANN 

(deterministic) and MBB (stochastic) is proposed for modeling annual streamflows of 

rivers that exhibit complex dependence. First, a nonlinear deterministic model, ANN 
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(radial basis function network) is fitted to the historical ar1nual streamflows, which 

captures the nonlinear trend in the data effectively. Then, the resulting residuals from 

the ANN model are resampled using a non-parametric resampling technique, moving 

block bootstrap with a view to capture the weak linear as well as the nonlinear 

dependence and any distributional information retained in the residuals. The proposed 

model has been applied to three annual streamflow data sets that exhibit complex 

dependence, drawn from different geographic regions with varying record lengths. The 

effective blending of the two data-driven models is shown to result in efficient 

simulations of the long-term storage and drought-related characteristics. 

Skewness present in the streamflows is better preserved by the proposed ANN based 

hybrid model (ANNHM) compared to the linear parametric based hybrid model 

(LPHM) plausibly owing to the effective capturing of the nonlinearities. The ANNHM 

being a completely data-driven model, reproduces the features of the marginal 

distribution more closely compared to LPHM, but offers less smoothing and little 

extrapolation value. However, the linear dependence structure is better reproduced by 

LPHM than ANNHM. 

Despite a better preservation of the linear dependence structure, LPHM is not able to 

effectively predict the variation of critical drought duration (including jumps) with 

respect to truncation level. On the contrary, ANNHM is able to model the variation of 

critical drought duration better, even though the preservation of linear dependence 

structure is inferior to LPHM. This is plausibly due to the effective blending of the two 

nonlinear models. Also, the mean drought characteristics are more efficiently modeled 

by ANNHM. 
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The relative bias in predicting the reservoir storage statistics at lower demand levels is 

found to be high in case of LPHM. Moreover, a large spread of the same is observed at 

all demand levels, thus increasing the relative RMSE significantly compared with 

ANNHM. 

Future research should address the extension of the proposed ANN-based hybrid 

model to single-site and multi-site modeling of periodic stream flows. 
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CHAPTER3 

PERIODIC STOCHASTIC STREAMFLOW MODELS 

3.1 INTRODUCTION 

Seasonality of streamflow data adds a degree of complexity to the selection of an 

appropriate stochastic model to fit the data. It may be necessary to use a parametric 

model that has seasonally varying properties. If the seasonality of the flow data under 

consideration appears to be only in the mean and the variance, then such seasonality can 

be removed by simple seasonal standardization, and a stationary model can be fitted to 

the deseasonalized data. However, if the autocorrelation structure of the observed data 

exhibits significant periodicity, then seasonal models that explicitly incorporate a 

periodic dependence structure must be used (Rasmussen et al., 1996). Varying degree of 

nonlinearity in the different periods/seasons, generation of streamflows owing to mixed 

precipitation mechanisms, add to the complexity further. Such characteristics of the 

geophysical time series make the modeling of multi-season streamflows a challenging 

task. 

An ideal single site multi-season synthetic flow generation model should aim to 

reproduce: the summary statistics (mean, standard deviation and skewness) and marginal 

distribution of observed flows at periodic and annual time scales; autocorrejation 

structure of flows at aggregated annual level; within-year and cross-year serial 

correlations; month-to-year cross-correlations; and non-linearity stationarity in the 

underlying dependence structure. In addition, it should provide sufficient variety in the 

stochastic simulations with a reasonable degree of smoothing and extrapolation. 



' 

3.2 LITERATURE REVIEW 

3.2.1 Parametric Models 

In operational hydrology, quite often synthetic seasonal streamflow sequences are 

generated using one of the following two approaches: (i) a direct approach using a seasonal 

model (whose parameters may change from season to season); (ii) disaggregation approach 

in which annual streamflows are generated first using a simple linear parametric model and 

the same are disaggregated into seasonal flows subsequently. Typical examples for the 

former approach include Hi pel et al. (1977), Hirsch ( 1979), Salas et al. ( 1982), Vecchia et 

al. (1983), Haltiner and Salas (1988). The seasonal models are oft~n used hi mod~ling 

streamflows at a single site and are quite simple in structure and are parsimonious. 

However, these models may not preserve the dependence structure of historical streamflow 

sequences over periods of several months to one or more years and hence may not be 

preferable for long-term reservoir operation studies (Stedinger and Taylor, 1982). 

In addition to the general drawbacks of ARJ ARMA models (mentioned in the earlier 

subsection), a few more drawbacks/limitations surface in the context of periodic modeling 

of streamflows: 

In certain cases, a different normalizing transformation may have to be applied for each 

period, for effective reduction of skewness close to zero and this may distort the correlation 

structure in the synthetic simulations upon inverse transformation to real space. If the 

streamflow data size is limited, then, a single transformation may have to be applied for all 

periods, which may not reduce the skewness to zero in all periods. This will result in 

modeling inaccuracies, as normality condition will not be satisfied for all periods. During 

46 



) 

I I l 

low flow periods, the standard deviation of flows may be equal or higher in magnitude than 

the mean of flows. This necessitates using certain transformations that have a lower bound, 

in order to avoid generation of negative flows. This may distort the marginal distribution of 

flows in such periods. Moreover, if each period apparently follows a different order model, 

then, the model may not be able to provide a good fit to the data, since exact statistical tests 

for identification as well as diagnostic checking of residuals, do not seem to exist for such 

cases. In case of periodic ARMA models, it becomes even complex, compared with 

periodic AR models. Additional complexities may arise due to stationarity conditions to be 

satisfied by the periodic AR parameters. 

In the disaggregation approach, to start with, annual flows are generated using an 

appropriate annual streamflow model, and then the same are divided among the seasons 

(periods) within the year. These models describe the distributions of streamflows both at 

the aggregated (annual) and the disaggregated (seasonal) levels. Such disaggregation can 

proceed further down in the time scale up to even hourly flows, in stages. The pioneering 

work in this direction was that of Valencia and Schaake ( 1973) though Harms and Campbell 

(1967) predates it. The structure of the Valencia and Schaake (VS) model is designed to 

preserve the variance and covariance between the annual and the seasonal flows and to 

preserve the variance and covariance among the within-yea; flows (~aias t:i (it., i 980). A 

major drawback of the VS model is that it fails to reproduce the cross-year serial 

correlations. In addition, the number of parameters to be estimated is quite large. Mejia and 

Rousselle (MR) (1976) extended the VS model by introducing an additional term with a 

view to preserve the correlations between the seasonal flows in the current year to those of 
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the previous year(s). In spite of increasing the model complexity through additional 

parameters, the MR model could not perform the intended function in all cases (Lane, 1982; 

Stedinger and Vogel, 1984). Driven by the concern of the complexity due to the large 

number of parameters required by the VS and the MR models, Lane (1979) developed a 

condensed disaggregation model. Even though the LAST computer package (Lane, 1979; 

Lane and Frevert, 1990) incorporates staging and the use of condensed models (thus 

significantly reducing the number of parameters), there are two major drawbacks: (i) it does 

not explicitly model the high-lag month-to-month serial correlations and (ii) it makes little 

effort to keep the sum of seasonal flows close to the specified annual total. Grygier and 

Stedinger (1988) mention that in case of Lane (1979)'s model, large adjustments are often 

required to make the generated flows at the seasonal level, add up to the specified annual 

value, resulting in distortion of the distribution of the generated flows. 

The condensed disaggregation models (Lane (1979, 1982); Stedinger and Pei, 1982; 

Stedinger et al., 1985; Grygier and Stedinger, 1988) attempt to reproduce only a selected 

subset of the correlation statistics with a view to reduce the number of parameters 

required and hence the model size. The condensed temporal disaggregation model of 

Stedinger et al. (1985) reproduces explicitly only the correlations between monthly flows 

and annual flows, and between consecutive monthly flows. The SPIGOT (Grygier and 

Stedinger, 1990) stochastic streamflow package uses univariate and multivariate 

generalizations of the temporal disaggregation model developed in Stedinger et al. 

(1985). Furthermore, empirical adjustment procedures suggested by Grygier and 

Stedinger (1988) have been incorporated into SPIGOT, in order to restore summability of 
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the disaggregate flows to the aggregate flows, in the event of normalizing transformations 

being used. Santos and Salas (1992) have presented a stepwise disaggregation scheme 

that would preserve means, variances and a specified covariance structure, also 

maintaining the additivity -property. However, this scheme is known to be limited to 

reproducing these properties only in the normalized flow domain. 

In the last decade, further advancements have been made in the parametric modeling 

front by Koutsoyiannis (1992; 1999; 2000) and Koutsoyiannis and Manetas ( 1996). 

Koutsoyiannis (1992) developed a parsimonious nonlinear multi-variate dynamic 

disaggregation model (DDM) that follows a stepwise approach for simulation of 

hydrologic series. This involved two parts (i) a linear step-by-step moments 

determination and (ii) an independent non-linear partitioning. This model was shown to 

treat the skewness of the lower level variables explicitly, without loss of additive 

property. Koutsoyiannis and Manetas (1996) proposed another simpler multivariate 

disaggregation method, that retained the parsimony in model parameters for lower level 

variables as in DDM (Koutsoyiannis, 1992), and implemented accurate adjusting 

procedures to allocate the error in the additive property, followed by repetitive sampling 

to improve the approximations of the statistics that are not explicitly preserved by the 

adjustment procedures. More recently, a generalized mathematical framework for 

stochastic simulation and forecasting problems in hydrology has been proposed by 

Koutsoyiannis (2000). A generalized autocovariance function is introduced and is 

implemented in a generalized moving average generating scheme that yields a new time­

symmetric (backward-forward) representation. A notable highlight of this model 
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framework is that unlike in the traditional stochastic models, the number of model 

parameters, the type of generation scheme and the type of autocovariance function can be 

decided separately by the modeler. This framework is shown to be appropriate for 

stochastic processes with either short-term or long-term memory. Koutsoyiannis (2001) 

also proposed a methodology for coupling stochastic models of hydrologic processes 

applying to different time scales. 

3.2.2 Nonparametric Models 

Nonparametric procedures offer significant advantages over their parametric 

counterparts. Nonparametric procedures generally reproduce the empirical structure of 

multivariate data sets, yet, they do not require assumptions about data or model structure, 

or complexities associated with parameter estimation. As a result, simple data 

resampling schemes such as the bootstrap and jackknife have gained acceptance by 

hydrologists as conceptually simple (yet computationally intensive) alternatives to more 

complex parametric alternatives. Helsel and Hirsch (1992) and Lall (1995) provide a 

comprehensive review on applications of nonparametric techniques to a wide class of 

water and environmental applications. 

While parametric methods of time series modeling require assumptions regarding the 

marginal probability distributions and the correlation structure of the variables of interest, 

nonparametric methods are, in general, data-driven and simply retain the empirical 

structure of the observed variables. Parametric methods require estimates of a number of 

model parameters, which the nonparametric methods can either minimize or avoid 
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altogether, depending on the method adopted (Vogel and Shallcross, 1996). Moreover, 

parametric uncertainty is considered implicitly in the nonparametric approach, since a 

broad class of models is approximated. It is to be noted that a parametric probability 

density function is one that is fully defined by a finite set of parameters, while a 

nonparametric probability density estimate is based on the entire sample (rather than a 

few sample moments). In case of the conventional linear parametric models, the data 

near the modes of the marginal distribution of observed streamflows dominate the model 

fit, and the tails can be viewed as extrapolation of that behavior. In the process, the 

parametric models generate synthetic streamflows beyond the extrema and in between the 

observed streamflows (including in between large discontinuities (if any)), inflicting 

considerable smoothing to the histogram of observed streamflows. It is to be mentioned 

that in certain cases, it may be rather unwise to over-smooth the wide discontinuities seen 

in the histogram of observed flow trace, since it may lead to some amount of 

misrepresentation of the real hydrologic behavior. In contrast, synthetic replicates from 

simple bootstrapping techniques, such as MBB, mimic the multimodality, peakedness 

and asymmetry seen in the marginal distribution of observed flows. However, this kind 

of bootstrapping fails to generate flow values other than those seen in the historical flow 

trace. In other words, it has a tendency to parse the data (no smoothing effect is seen) and 

thus defeats the purpose of synthetic streamflow simulation. Hence, there is need for a 

model that is not only good at reproducing the salient features of the marginal distribution 

of observed streamflows, but also flexible enough to provide reasonable degree of 

smoothing and extrapolation in the tails. A nonparametric density estimator is consistent, 

whereas a mis-specified parametric PDF has a bias that does not reduce with increasing 

51 



sample size (Sharma et al., 1998). Silverman (1986) and Scott (1992) provide 

introductory material on nonparametric methods. The increasing awareness of the need 

to model nonlinearity and nonstationarity (such as jumps and periodicities) in the 

underlying dynamics of geophysical processes coupled with the availability of reasonable 

length of historical records and fast and inexpensive computing facilities has spurred the 

use of nonparametric methods in several areas of hydrology, in recent times (Lall, 1995; 

Lall and Sharma, 1996; Lall et al., 1996). 

A variety of non-parametric "smoothers" are available in the statistical literature. They 

differ in their estimation efficiency, in their computational demands, in their applicability, 

and in their mathematical form. However, they share the goal of approximating (with 

asymptotically vanishing error) an arbitrary, unknown function of the data, and the notion 

that each estimate be local (i.e., influenced only by a nearby data). Smoothers are 

interpretable as weighted moving averages (kernel estimators) of some function of the 

data. Localization is achieved by weights that vanish with distance from the point of 

estimate. 

For trend analysis and investig.ating bivariate dependence, locally weighted estimation 

or LOESS has emerged as the nonparametric method of choice. Helsel and Hirsch 

(1992) and Hirsch et al. (1991;1993) formalize procedures for using LOESS for trend 

analysis ofhydrologic and environmental data, and to remove systematic variations in the 

environmental variable of interest. Sangoyomi and Lair ( 1993) used kernel density 

estimate (k.d.e.) to investigate the number of modes in the p.d.f. of several hydroclimate 
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time series in the Great Salt Lake basin, with the aim to identify distinct regimes in long 

term climate, and thereby improve the predictability of the Great Salt Lake volume 

variations. Lall and Bosworth (1993) have developed a multivariate kernel density 

estimator that employs a set partitioning strategy to define local bandwidth matrices 

proportional to subset covariance, and explore multivariate dependence between 

precipitation, evaporation, net precipitation and annual inflow into the Great Salt Lake. 

An interesting interplay between precipitation and evaporation in generating inflows is 

seen. Serial dependence issues are not properly dealt with. The sensitivity of k.d.e. to 

bandwidth variation is examined, but optimal bandwidth selection is not attempted. 

Tong (1990) provides motivation for nonlinear time series analysis methodology and 

for nonparametric modelling and visualization of time series. He uses a daily river flow 

example to illustrate that such data with sudden jumps, time irreversibility, asymmetric 

joint distributions, persistence, lots of high level crossings, and state dependent 

correlation between lagged flows do not support the assumptions inherent in classical 

linear ARMA modelling. 

Yakowitz (1987, 1993), Yakowitz and Karlsson (1987), Karlsson and Yakowitz 

(1987a, 1987b) motivate and provide theoretical basis of nearest neighbour (NN) 

regression for prediction of time series and specifically for rainfall-runoff modelling. 

Galeati ( 1990) shows that this simple NN predictor provides lower mean inflow to an 

Italian reservoir relative to an autoregressive model with exogenous inputs that was 

coupled to physically based, calibrated, rainfall-runoff and snow cover evolution models. 
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Smith (1991) and Smith et al. (1992) present some interesting applications ofYakowitz's 

ideas that expose the flexibility of nonparametric methods for seeking relationships 

between arbitrary functions of possibly linked data sets. Kember et al. ( 1993) connect the 

NN predictor to state space reconstruction methods used to reconstruct nonlinear 

dynamics (Farmer and Sidorowich, 1987) from time series. 

Lall et al. (1994) use Multivariate Adaptive Regression Splines due to Friedman 

(1991 ), to recover the map of the dynamical system, based on the time series of biweekly 

volume of the Great Salt Lake. Parameters including model order, delay, and spline 

parameters are chosen using generalized cross validation (GCV). Blind predictions up to 

4 years ahead using only prior data are seen to be dramatically superior as the forecast 

horizon increases, compared to those from the best fit autoregressive (AR) model. In 

fact, the unprecedented, and dramatic 4-year rise and fall of the Great Salt Lake in the 

1980's, could be predicted. 

Rajagopalan et al. (1993, 1994) and Lall et al. ( 1993) develop a seasonal non parametric 

renewal model (NPR) for simulating daily precipitation, where successive dry and wet 

spell lengths may be dependent or independent. All requisite probability density 

functions are estimated by kernel methods. Monte-Carlo results with real data show that 

spell characteristics as well as other statistics are well reproduced. Tarboton et al. (1993) 

have developed a multivarite kernel density estimate (k.d.e.) with local bandwidths 

proportional to local covariance based on k nearest neighbours (similar in spirit to Lall 

and Bosworth (1993)), as well as requisite conditional k.d.e. 's for simulation of 
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streamflow time series. Tarboton (1994) evaluates the performance of the Colorado river 

annual streamflows simulated by SPIGOT (Grygier and Stedinger, 1990) through visual 

inspection of plots of k.d.e.' s of marginal p.d.f. of recorded and simulated traces. 

The bootstrap is a simple non-parametric technique for simulating the probability 

distribution of a statistic or a specific feature of the distribution. The key idea is to 

resample from the original data, either directly or through a fitted model to create 

replicate data sets, from which the empirical probability distribution of the statistic of 

interest can be found (Davison and Hinkley, 1997). It is a good example of a new class 

of nonparametric statistical methods that substitute computer intensive computations for 

complex mathematical (parametric) models. Indeed, the bootstrap offers the potential for 

highly accurate inferencing and can eliminate the need to assume or impose a convenient 

model that does not have a strong scientific basis. At the same time, the basic idea 

motivating the bootstrap approach is conceptually simple. Resampling methods are 

applicable quite generally, and their implementation is usually automatic (Leger et al., 

1992). However, while dealing with dependent data, it is a challenge to resample the 

records in such a way to ensure the preservation of the temporal and the spatial 

covariance structure of the original time series. With the advent of powerful computers, 

bootstrap resampling methods are emerging as potential techniques in modern statistical 

analysis for formulating inferential procedures such as constructing confidence regions, 

finding standard errors of estimates, carrying out tests of hypothesis. In addition, there is 

hope that the bootstrap can address complicated issues that arise in model selection. The 

use of bootstrap methods in time series analysis is receiving considerable attention in 
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modem statistics, as documented by Lepage and Billard (1992), Efron and Tibshirani 

( 1993 ), Hjorth ( 1994 ), and Davison and Hinkley( 1997). 

The classical bootstrap resampling scheme was introduced by Efron (1979). This 

technique prescribes a data resampling strategy using the random mechanism that 

generated the data. In other words, it resamples with replacement from the empirical 

distribution function of independent 'and identically distributed (i.i.d.) data. Its 

applications for estimating confidence intervals and parameter uncertainty are well 

known (Tasker, 1987; Hardie and Bowman, 1988; Zucchini and Adamson, 1989). The 

procedure of synthetic streamflow generation addressed by Maass et al. (1967) is 

analogous to the classical bootstrap approach. Random resampling methods have been 

used in hydrology for comparing statistical methods, estimating parameter uncertainty, 

and comparing network design techniques. A few such works are those ofTasker (1987), 

Zucchini and Adamson (1988; 1989), Woo (1989) and Moss and Tasker (1991). When 

the random variables are i.i.d., this procedure provides very good approximation to the 

distribution of many commonly used statistics. However, for dependent random 

variables, the Efron's bootstrap fails (Lahiri, 1995). 

To model dependent time series data, there are two popular bootstrapping approaches. 

One is known as the Model Based Resampling (MBR) approach and the other is the 

Moving Block Bootstrap (MBB) approach. Model based resampling for time series has 

been discussed by Freedman (1984), Freedman and Peters (1984) and Efron and 

Tibshirani (1986; 1993), Bose (1988), among others. In this method, to start with, a 

model structure is assumed, its parameters and residuals are estimated. Then, the 
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estimated model residuals are recentred around their mean and are resampled with 

replacement considering them as independent and identically distributed (i.i.d). Finally, 

these bootstrapped residuals are used to synthesize a time series. It is simple to apply and 

leads to good theoretical behavior, provided the fitted model is correct. The major 

drawback with this resampling scheme is that, in practice, the model structure is to be 

correctly identified and its parameters are to be accurately estimated from the data. If the 

chosen structure is incorrect, the generated series will be from a wrong model, and hence 

they will not have the same statistical properties as that of the original data (Davison and 

Hinkley, 1997). 

The other popular approach to resampling in the time domain, known as the Block 

Bootstrap scheme, resamples blocks of consecutive observations. According to this, the 

data (of size N) is divided into b non-overlapping blocks, each of length L. Then, the 

synthetic replicates are constructed by resampling the blocks at random, with 

replacement. In this method, the original dependence structure is maintained within the 

blocks, but is destroyed at boundaries between blocks. This was developed by Hall 

(1985) and Carlstein (1986). Subsequently, Kiinsch(1989) and Liu and Singh (1992) 

independently proposed the Moving Block Bootstrap (MBB) approach for time series 

analysis. In this method, the observations from a univariate dependent sequence 

x1, .. . ,xN are divided into blocks Bi of I consecutive observations starting with xi; i.e., 

Bi =(xi, ... ,xi+l- l), where i =l, ... ,b and b=N-/+1. Replicates are generated by 

resampling the overlapping blocks with replacement from the set (B 1 , ... , Bb), wherein 

each of the overlapping blocks Bi has equal probability (1/b) of being resampled. The 
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overlapping blocks picked at random are then pasted end-to-end to form a replicate of the 

historical sample. 

The MBB provides "synthetic" time series that preserve the empirical probability 

distribution of the original observations. The MBB does not require one to select a model 

and the only parameter required is the block length (Vogel and Shallcross, 1996). The 

idea that underlies this block resampling scheme is that if the blocks are long enough, 

much of the original dependence will be preserved in the resampled series. This 

approximation is best if the dependence is weak (Davison and Hinkley, 1997). The 

number of blocks available for resampling should be large enough to ensure a good 

estimate of the distribution of the statistic. Use of long block sizes for resampling results 

in fewer blocks available for resampling as a result the synthetic replicates lack variety. 

Thus, unless the record length is considerable to accommodate longer and more number 

of blocks, the preservation of the correlation structure of the original series may not be 

possible, especially in cases of complex, long-range dependence structure. In such cases, 

the block resampling schemes tend to generate synthetic series that are less dependent 

than the original data. In some circumstances, this leads to very poor resampling 

approximations. Since this kind of bootstrap will never generate an observation either 

larger or smaller than the maximum or minimum historical observation, this technique is 

not useful for examining the probability distribution of the largest or the smallest 

observation, unless the sample size is greater than the planning horizon. 

More recently, Lall and Sharma (1996) have used a nearest neighbour bootstrap 

technique for modelling dependent streamflows. Here, the dependence is preserved in a 
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probabilistic sense. This method involves searching the historical record to find the 

historical nearest neighbours and subsequently resampling their successors with a view to 

preserve the empirical dependence of the flow trace. Both MBB and k-NN resample the 

observed streamflow values for generating synthetic sequences and hence the simulations 

from these models cannot fill in the gaps between the data points in historical record. 

Also, they fail to provide extrema more severe than what is found in the historical record. 

Since the minimum extremes are of interest in modelling critical inter-annual low flow 

sequences, particularly in arid regions, such bootstrap methods may not be suitable for 

the prediction of critical droughts. The subsequent work of Sharma et al. (1997) avoids 

this limitation by resampling from the historic data with perturbations. The perturbations 

serve to smooth over the gaps between data points in the density estimate and provide 

alternate streamflow realizations that are different, but are statistically similar to the 

historical record (Sharma et al., 1997). However, since the streamflows are bounded, 

there is a possibility of leakage of probabilities across boundaries, when the perturbation 

is added and this may result in a bias in the simulated density in the neighbourhood of the 

boundary. In order to minimize this bias, appropriate kernel functions and/or bandwidths 

are to be chosen (Sharma et al., 1997), which may be a demanding task for any practising 

hydrologist. The nearest neighbour bootstrap technique and its variations are preferable 

if the data are plentiful, as in case of daily streamflow modeling (Lall and Sharma, 1996). 

The limitations of this technique for modelling monthly streamflows, have been brought 

out by Srinivas and Srinivasan (200 1 ). They have reported that the standard <leviation of 

historical flows during low flow months are underesti~ated by this technique. With 

increase in the model order (d > 1 ), greater underestimation of the same is found to occur. 

In addition, the first few lag serial correlations are reported to get distorted in an effort to 

preserve higher lag serial correlations, when higher order models are tried. 
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The Generalized Cross Validation (GCV) score function (Craven and Wahba, 1979) can 

be used to choose the number of nearest neighbours and the order of the k-NN model. 

This is somewhat similar to the use of Akaike information criteria (AIC) for model 

selection in the traditional parametric modelling framework. A GCV based choice of the 

model order and the number of neighbours may be suboptimal for the particular water 

resources planning study under consideration, since it only considers the performance of 

the model with respect to conditional mean and variance (Rajagopalan and Lall, 1999). 

This necessitates further tuning to arrive at the appropriate combination of the model 

order and the number of neighbours for the study of interest. 

Tasker and Dunne (1997) generate periodic streamflow traces based on a stochastic 

streamflow model (periodic autoregressive moving average model with log­

transformation [PARMA( I, 1 )-L T]) using bootstrap resampling of residuals. While 

generating sequences for a single site, each month of bootstrap sequence of residuals is 

selected by randomly selecting a year with replacement and choosing the residual for the 

month for that year. This means that the selected residuals for each month in a bootstrap 

sequence may be from a different year. They mention that the residuals extracted from 

the fitted stochastic streamflow model will be approximately independent (since 

appropriate model is fitted at pre-whitening stage), but not identically distributed in time 

and that the seasonal differences of the residual distributions can be accommodated by 

bootstrapping the residuals for specific months. This model can be viewed as "model 

based resampling applied to periodic data". Srinivas (2001) shows the inadequacy of this 
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method in modelling the serial-dependence structure and the nonlinear dependence 

(estimated using state-dependent correlations) present in the streamflows. 

Lall et al. (1996) present a stochastic model for resampling daily precipitation where the 

probability distribution functions (pdfs) of alternating wet and dry spells and of rainfall 

amount are estimated nonparametrically using kernel density estimators. This is equivalent 

to a bootstrap or sampling with replacement of the observed data sequence of spell lengths 

and precipitation amounts. Herein, smoothed empirical distribution functions are used for 

resampling, and sequential attributes of spells may be preserved. Necessary calibration 

parameters are chosen automatically from the data set using measures aimed at providing a 

good fit to the unknown underlying pdf. The application was to model the precipitatiion in 

the western USA, wherein during winter, it is in the form of snow due to orographic and 

frontal mechanisms, and convective rainfall processes are dominant in other seasons. 

Marked differences in the storm tracks and moisture sources over the seasons have been 

reported. A mixture of markedly different mechanisms (some related to the El Nino­

Southern Oscillation) leads to the precipitation process in the western United States (Cayan 

and Riddle, 1992). It is unlikely that a robust parametric framework for model specification 

and selection can be devised for uniform application given the likely heterogeneity in 

precipitation generation mechanisms (Lall et al., 1996). The primary differences when 

compared with the traditional parametric wet/dry spell models are the following: (1) the 

relevant probability functions are estimated without recourse to prior assumptions as to the 

parametric form of the model, and (2) a more general conditional dependence structure is 

admitted. 
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According to Silverman (1986), sampling from the kernel density estimate (k.d.e.) can lead 

to reduced variance of the Monte-Carlo design. In addition, it also avoids the usual problem 

with the bootstrap "a number of the historical values being repeated in a generated sample", 

and provides an ability to fill in and extrapolate to a limited extent beyond the observed 

values. Moreover, arbitrary, finite component mixtures are readily admitted, without any 

hypothesization or formal identification. This provides a more direct and parsimonious 

representation of such structure if present in the data. 

Recently, Tarboton et al. (1998) have developed a nonparametric temporal disaggregation 

model for single site periodic streamflow modelling. They have shown that a kernel 

density estimate of the joint distribution of the disaggregate flow variables can form the 

basis for conditional simulation based on an input aggregate flow variable. Being data­

driven and relatively automatic, this method is able to model the nonlinearity in the 

dependence structure of the historical flows to a reasonable extent. The preservation of a 

variety of statistical attributes using this conditional simulation procedure has been 

demonstrated through applications to synthetic data and periodic streamflows from the 

San Juan river in New Mexico, USA. Possibly due to the smoothing of the kernel density 

estimate, some amount of bias is observed in the monthly standard deviations and 

skewnesses of the disaggregated flows from this nonparametric disaggregation model 

(see Figs. 8 and 9, Tarboton et al. 1998). Even though the marginal distributions and the 

state-dependent correlations of observed flows are reported to be better preserved 

compared to SPIGOT (Fig.11, Tarboton et al., 1998), further improvement is desirable. 

The drawbacks of this method as given by Tarboton et al. (1998) are: (1) it is data and 
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computationally intensive; (2) estimating an optimal bandwidth to use is a 

computationally demanding task. As with the method of moments and the method of 

maximum likelihood in the parametric case, different optimality criteria can lead to quite 

different bandwidths being selected; (3) the choice of kernel function is not crucial, but 

the parameterization of the bandwidth matrix in the multivariate case may affect the 

results dramatically; (4) the sample size required increases, as the complexity of the 

underlying density function increases, thus reducing the advantage of the NPD approach 

for heterogeneous functions; (5) no simple equation for the model is available to report. 

Disaggregation of annual flows to monthly flows at a single site using this nonparametric 

disaggregation (NPD) model requires the estimation of a complex, 13-dimensional 

density function. Tarboton et al. (1998) report that the data points in a monthly historical 

record of length 80 years are inadequate for the accurate estimation of the 13-dimensional 

complex joint probability density function in terms of statistical efficiency criteria. 

3.2.3 Hybrid Moving Block Bootstrap Method 

More recently, hybrid moving block bootstrap (HMBB) method has been introduced by 

Srinivas and Srinivasan (2000; 2001 a; 200 I b) for stochastic modeling of periodic 

streamflows that exhibit complex dependence, based on the post-blackening approach of 

Davison and Hinkley (1997) .. This approach suggests using a parsimonious linear 

parametric model for partial pre-whitening of the observed streamflows. The structure 

present in the residuals extracted from the partial pre-whitening stage is simulated by 

MBB. The resulting innovations are post-blackened to synthesize the replicates of the 

observed flows. Hereafter, this model will be referred to as Hybrid Moving Block 

63 



. "\ 

I 

Bootstrap (HMBB). In order to preserve the autocorrelation structure at the annual level 

and the cross-year serial correlation structure (that are essential for the efficient 

prediction of reservoir storage statistic and modeling critical run characteristics), HMBB 

requires resampling long blocks of residuals, particularly when the cross-year 

dependence is strong. This is because HMBB uses MBB for resampling the residuals, the 

limitations of which have already been mentioned. As a result, variety and smoothing in 

the simulations get reduced, which in turn, reduces the variability in the simulated critical 

run characteristics and reservoir storage capacity (validation statistics of direct interest to 

investigator), thus affecting the design decisions. 

3.3 MOTIVATION and PRESENT STUDY 

The motivation for the method of periodic streamflow modeling presented in this 

research work comes from a desire to develop a potential nonparametric stochastic model 

that is effective in reproducing summary statistics, dependence structure and the salient 

features of marginal distribution (multimodality, peakedness and asymmetry) without 

compromising on smoothing, extrapolation and variety in simulations. Such an ideal 

model is expected to be effective in reproducing validation statistics [Stedinger and 

Taylor, 1982] such as storage capacity and critical/mean run characteristics that are of 

interest to the investigator. In this regard, the matched block bootstrap method presented 

in recent works [ Hesterberg, 1997; Car/stein et a/., 1998] seems to be useful. These 

works suggest improving the performance of MBB in modeling data with strong and/or 

long range dependence through matching rules for resampling moving blocks. Out of a 

few matching rules recommended by Car/stein et al. [1998], the rank matching rule was 
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found to be more accurate and generally satisfactory [Hesterberg, 1997]. In a rank 

matching procedure, the blocks are matched using a single value at the beginning or the 

end of a block. It is well suited for Markov processes, in which the last value in a block 

is assumed to contain all the information in the block for predicting future observations. 

In this research work, a new nonparametric simulation model is proposed to synthesize 

multi-season (periodic) streamflows, based on the rank matching idea of Car/stein eta/. 

[1998]. In the proposed method, non-overlapping within-year blocks (formed from the 

observed time series) are first resampled using rank matching rule of Car/stein et a/. 

[1998] and these resampled blocks are subsequently perturbed using a simple weighted 

smoothing strategy to achieve smoothing and extrapolation in simulations. 

The following sections will deal with: i) the description of the algorithm of the perturbed 

matched block bootstrap (PMABB) method that is proposed in this research work; ii) the 

evaluation of the performance of PMABB through application to synthetic data from a 

known self-exciting seasonal threshold autoregressive moving average model; and iii) the 

comparison of the performance of the proposed model with the periodic k-nearest 

neighbour bootstrap technique (Lall and Sharma, 1996; Srinivas and Srinivasan, 2001a) 

(referred as Pk-NN) and the hybrid stochastic streamflow model introduced by Srinivas 

and Srinivasan (2001b) (referred as HMBB), using the monthly streamflows measured at 

two sites, one on the river Narmada and the other on the river Hemavathi (a major 

tributary of Cauvery). Finally a set of conclusions is drawn. 
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3.4 ALGORITHMS 

This section describes the model structure and the algorithms of: (i) the Periodic k-

Nearest Neighbour (Pk-NN) resampling technique; (ii) the Hybrid moving block 

bootstrap (HMBB) method and (iii) the Perturbed Matched Block Bootstrap (PMABB) 

method .. In these descriptions of the model algorithms, bold upper case letters will 

represent vectors. 

3.4.1 The Periodic k-Nearest Neighbour (Pk-NN) Resampling Algorithm 

I 

The k-NN bootstrap method for resampling hydrologic time series was proposed by 

Lall and Sharma (1996). This method has been developed for modelling dependent data 

and it preserves the dependence in a probabilistic sense. Multivariate nearest neighbour 

probability density estimation provides the basis for this method. Herein, the k-NN 

resampling algorithm of Lall and Sharma (1996) is adapted to model periodic 

streamflows and hence the same is referred to as Periodic k-Nearest Neighbour (Pk-NN) 

resampling algorithm. 

Let the time series of observed periodic streamflows be denoted by Qv, 't , where v is 

the index for year (v =1, . . . , N) and 't denotes the index for month within the year ('t = 1, 

.• • , c.o), N refers to the number of years of historical record and c.o represents number of 

months (=12) within the year. 

Let the hydrological water year start with the month of June of a calendar year and end 

with the month of May of the subsequent calendar year. Now, the first value to be 
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simulated will be June month flow. For this, one has to pick randomly any one of the N 

June month flows from the historical data. Let it be denoted as q,,1 , where i is the water 

year to which the flow value belongs. 

Following are the sequential steps involved in the synthetic simulation of observed 

periodic streamflow data using this method: 

1. Define the composition of the "feature vector" of dimension d. 

For example, for order of dependence equal to two (d=2), initial feature vector for 

simulating the June month flow will be the conditioning set { qH ro ,qi-1 ro-I } . This , . 

represents the dependence of the June flow to be simulated on two prior monthly 

flows (i.e, May and April flows of the previous water year respectively). 

The historical state vectors D't for any month 't, are the feature vectors of all q v, t in 

the historical record. For example, for simulating June month flow, the historical 

state vectors will be: {q 1,m, ql ,m-1 }, .. . , {q N,m ' q N,m-J 

2. Denote the current feature vector as Di and determine its k nearest neighbours from 

among the historical state vectors for that month D't, using the weighted Euclidean 

distance riv . 

( 

d Jl I 2 
r;v = ~ w1 (v ij - vv1)

2 

j = ) 

(3.1) 
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In eq.(4.5), r;v is the weighted Euclidean distance from the current feature vector to 

the "v th" historical state vector among the historical state vectors Dt for the month 

t ' " v ·· " is the "J' th" component of the current feature vector and "v . " stands for the 
' 1) ' VJ 

"j th" component of the "v th" historical state vector. The weights w j are chosen a 

priori as inverse of some measure of scale such as standard deviation or range of V j 

that comprises of the j th components of the historical state vectors Dt for the month 

t . The number of neighbours "k" is a smoothing parameter. It may be chosen using 

any appropriate order selection strategy such as generalised cross-validation (GCV) 

(Craven and Wahba, 1979). Lall and Sharma (1996) suggest using k equal to square 

root of the sample size as a rule of thumb. 

3. Denote the ordered set of nearest neighbour indices by Ji,u, where u= l, ... ,k. An 

element j(i) of this set records the time v associated with the j-th closest historical 

state vector to Di among Dt. Denote xsj(i) as the successor to Dj(i) . If the data are 

highly quantized, it is possible that a number of observations may be at the same 

distance from the conditioning point, in which case a permuting may help. 

4. Define a discrete kernel KG(i)) for resampling one of the xsj(i) as follows : 

KG(i)) = _!!L 
k (3.2) 

2)/j 
j=l 
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where K(j(i)) is the probability with which xsj(i) is resampled. It is to be noted that 

this resampling kernel is the same for any i, and can be computed and stored prior to 

the start of simulation. Lall and Sharma (1996) develop this kernel through a local 

Poisson approximation of the probability density function of state space neighbours. 

5. Using the discrete probability mass function K(j(i)), resample an xsj(i) and update 

the current feature vector. Proceed to step 2, if additional simulated values are 

required to be generated. For a more detailed discussion on the k-NN algorithm, the 

reader is referred to Lall and Sharma (1996) and Rajagopalan and Lall (1999). 

3.4.2 Periodic Hybrid Moving Block Bootstrap (HMBB) 

This section presents a new algorithm for generating periodic synthetic streamflows that 

extends the Post-blackening approach suggested by Davison and Hinkley (1997). 

Let the observed (historical) streamflows be represented by the vector Qv,t , where v is the 

index for year ( v= 1, ... ,N) and 't denotes the index for season (period) within the year ( 't 

= 1, ... ,co), N refers to the number of years of historical record and co represents the 

number of periods within the year. The modeling steps involved are as follows: 

1. Standardize the elements of the vector Qv,t as: 

(3.3) 
ST 
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where Cit and st are respectively the mean and the standard deviation of the 

observed streamflows in period 't. Note that the historical streamflows are not 

transformed to remove skewness. 

2. Pre-whiten the standardized historical streamflows, Y v,t• using a simple periodic 

autoregressive model of order one (PAR(l )), and extract the residuals Ev r . , 

E v,t = Yv,t - q> l,t Yv,t -1 (3.4) 

In eq. (3.4), q> 1 1, .•. ,q> 1 Til are the periodic autoregressive parameters of order one. , , 

Herein, for the parameter estimation, a simple method of moments (Salas et al., 1980) 

I" 

has been used. It is to be noted that the residuals Ev r may possess some weak , 

dependence (since the parameters are estimated from a simple PAR(l) model). 

Herein, it is to be mentioned that bootstrap schemes like moving block bootstrap 

(MBB) ( Kiinsch, 1989) can serve as a reliable tool for modeling the weak linear 

dependence, if any, in the residuals. Moreover, this scheme being data-driven, can be 

expected to capture the marginal distribution features, and to a certain extent may be 

able to preserve the non-linear dependence inherent in the observed record, possibly 

with some trade-off with regard to smoothing and generation of extrema, when 

compared to parametric models. 

* 3. Obtain the simulated innovations Ev r by bootstrapping Ev r using the Moving , , 

block bootstrap (MBB) ( Kiinsch, 1989) method. Herein, the monthly residuals 

resulting from the PAR( 1) model are divided into q number of (possibly) overlapping 
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blocks B; with block size "f' taken as an integral multiple of the number of periods 

( ro) within the year. It is to be noted that each of the overlapping blocks starts with 

the first period of a hydrological water year. This is done with a view to capture the 

within-year correlations for significant number of lags. For example, the block sizes 

of residuals in monthly streamflow modelling context would be 12, 24, 36, and so on 

(abbreviated as I= ro, l = 2ro, I= 3ro, and so on). Note that when block length lis 

"n" years long, the overlap is (n-1) years, indicating that when the block size is one 

year long, there is no overlap. 

In general, the i th block of size I = mco (m is a positive integer, such that, 

m=1, ... ,N), may be written as: B; = (E i,I> ... ,E i+m-l,ro) 

where i = 1, ... , b and b = N-m+l. 

For example, if l = 3ro and ro =12, the 4-th block is written as: B4 = ( c41, ... ,£6 12). 
' , 

The block size I, to be selected for resampling the residuals, would primarily depend 

on the amount of unextracted weak dependence present in the residuals. Innovations 

* Ev r , are generated by resampling the overlapping blocks Bi. at random, with , 

replacement from the set (Bh ... , Bb) and pasting them end-to-end. It is to be noted 

that each of the (possibly) overlapping blocks has equal probability (1/b) of being 

resampled. 

* 4. The innovation series Ev r is then "post-blackened" by using eq.(3.5) to obtain the , 

sequence Zv,r . 
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Zv;r =q>l ,t zv,t - l+Ev,t (3.5) 

The synthetic generation process starts with z1_0 = 0. The "warm-up" period is chosen 

to be large enough to remove any initial bias. The values of Zv,t are then inverse 

standardized using eq. (3.6), to obtain the synthetic streamflow replicate Xv,t· 

xv,t = Czv,t · S. ) + q, (3.6) 

It is to be noted that no normalizing transformation is applied in case of the hybrid model. 

Herein, it is to be mentioned that, when the number of data points in the historical record 

is limited (as in case of annual streamflow modeling), the mean of residuals recovered 

from the pre-whitening stage need not be necessarily equal to zero. In such a case, the 

residuals are to be re-centered to zero before proceeding with resampling them for 

generating the innovation series (Davison and Hinkley, 1997; p.397). However, when the 

data points are relatively plentiful (as in case of periodic streamflow modeling), we find 

that the sum of residuals recovered from partial pre-whitening stage tends to zero and 

hence the residuals need not be re-centered. 

3.4.3 Perturbed Matched Block Bootstrap (PMABB) 

In this section, we present a new nonparametric method "Perturbed Matched Block 

Bootstrap (PMABB)" for simulation of multi-season hydrologic time series, based on the 

idea of rank matching proposed by Car/stein et al. [1998). The rank matching method 

suggests constructing a Markov chain by resampling the blocks formed from the given 

data sample by aligning with higher likelihood those blocks that match at their ends. 

Here, we propose the algorithm, in general, for resampling within-year blocks of either 
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equal or unequal lengths. In cases where the identification of the different seasons within 

the water year is clear, the block lengths can be chosen accordingly, so that the complex 

dependence structure present in the underlying hydrologic process can be well recovered. 

In the description to follow, vectors will be represented by bold upper case letters. 

Let the observed (historical) periodic streamflows be represented by the vector Qv,t, 

where vis the index for year (v = 1, ... ,N) and -r denotes the index for period within the 

year (-r = 1, ... ,ro), N refers to the length of observed record (in years), and ro 

represents the number of periods within the year. 

For each year of the observed record, prepare "n" number of non-overlapping within-year 

blocks B wl, ... , B:' n with the respective lengths being L;v, ... , L;, such that the lengths 
v, ' 

' 
of all the within-year blocks sum to ro. 

n 
i.e., 2: Lj = ro. 

j=l 
Herein, s;:; denotes the "i" 

th within-year block in the year "v" of the observed streamflow record. 

Bw· ={q S+i, ... ,q S+Lw} V,l V, V, 1 
{ 

0 
i-1 

where S = 2: Lj 
j=l 

Let e:'; denote the last flow value (end element) of B:';. 
' ' 

W - q 1Y ev i- v S+L; ' , { 

0 if i = 1 

where S = iii Lj otherwise 

J=l 

Fo~thesets Ef: Ef ={e~i, ... ,e!V,;} 
' 

15:i5:n 

if i = 1 

otherwise 
(3.7) 

(3.8) 
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Arrange the elements of Ej in ascending (or descending) order of their magnitude and 

assign ranks. Let r:, i denote the rank of e:,i for 1 5 i :S n and 1 5 v :S N. The 

algorithm is initialized by randomly selecting one of the "N" first within-year blocks 

B~, . .. ,B~ 
1

. This block is referred to as current within-year block at the start of , , 

simulation. 

The key steps in the resampling algorithm are as follows: 

(i) Identify the rank of the end element of the current within-year block. Let it be 

denoted by Rc. 

(ii) Select the nearest neighbor to the current within-year block. For this, randomly 

select one of the "2m+ 1" neighboring blocks to the current block, whose end 

elements have ranks between (Rc- m) and (Rc + m), where m is a small positive 

integer. This requires generating a uniform random number "U" in the range of 

integers (Rc- m) and (Rc + m). Whenever (Rc- m) becomes less than 1 or (Rc + m) 

becomes greater than "b", one may end up with a value of U, that is either less than 1 

or greater than b. Such a rank does not correspond to any block. This artifact can be 

overcome by folding back (or reflecting) U to u'. Hereafter, this procedure would be 

referred to as method of reflection for rank. Neighboring block is the one that 

corresponds to the rank U' in the given record. 

' {2b + 1 - u if u > b u = 
1-u if u < 1 

(3.9) 

The neighborhood "2m+ 1" to a current within year block is referred to as band width. 
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(iii) Obtain the within-year block that follows the selected neighboring within-year 

block in the given record and append it to the current within-year block. Note that, if 

the current within-year block is the last within-year block in a year, then the block to 

be appended will be the first within-year block in the next year. However, if the 

selected within-year block is B N n, then it does not have any block following it. One , 

option to overcome this problem is to create a circular time series such that the block 

following B N,n would be Bt1 • Another option is to reflect the within-year blocks of 

the last year of the given record using B:,i = B:{N + l-v i for v = N+ 1, so that the block , 

following B N,n (i.e., B ~ + l,l th block) would be B ~.l. Herein, the latter option 

referred to as method of reflection of blocks (MRB) is used for coping with this 

problem. 

(iv)The recently appended block becomes the new current within-year block. Proceed to 

step (i), if additional simulated values are required to be generated. 

One of the options for synthesizing replicates could be to break the long sequence of 

simulated values (appended blocks) into non-overlapping blocks of length equal to that of 

the observed record. Other option would be to initialize simulation of each replicate 

through random selection of current block. The latter option would enhance the chance of 

selection of the first block B1~ when MRB method is used in resampling the blocks. , 

Otherwise the first block in the data set would never be selected in the simulation (except 

upon initialization), because it does not follow any block with end element in vector Ej. 
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Smoothing the resampled blocks 

Let the sequence resulting from concatenating the blocks resampled using rank 

matching rule be denoted by the vector Xv,t . One can smooth Xv,t by using an appropriate 

perturbation strategy, such as the weighted smoothing adopted herein. However, it has to 

be ensured that the perturbation does not have any adverse effect on the reproduction of 

the statistical attributes of Xv,t· In literature, smoothing plans have been developed for 

many kinds of data [Velie man et a/., 1981; Bowman and Azzalini, 1997]. Herein, we use 

weighted smoothing with a window size of 12 months (equal to the number of seasons in 

a water year). Random weights" Wv" are generated in the range p of real numbers m [1-

B, 1 +B] for each year v of the resampled series, where () is a small positive fraction. The 

simulated time series Yv,t is 

given by: Yv-r =WvxXv-r for v = 1, .. . ,N;-r= 1, . .. ,ro , , (3.1 0) 

Typically, for finite samples of size 50 to 200 years, a choice of() ranging from 0.05 to 

0.15 has been found appropriate. Even though the choice of higher value of () enhances 

smoothing and extrapolation value in simulations, it affects the performance of the model 

in simulating the correlation structure and other statistics of concern. Consequently, the 

validation performance of the model, measured in terms of prediction of storage and run 

characteristics, drops. Thus, caution should be exercised in opting for a higher () value. 

~ 

The issue of choosing the number of neighbours w (= 2m + 1) to be used in rank 

matching, has been discussed in detail by Hesterberg [ 1997] and Car/stein et al. [ 1998]. 

They have provided suggestions for the number of neighbors based on minimizing 
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asymptotic mean square error of the logarithm of the variance of the sample mean 

considering sample sizes ranging from 200 to 5000. However, while dealing with short 

hydrologic records, it would be appropriate to experiment with different possible choices 

of "m" and select the effective value to be adopted, after analyzing the resulting behavior 

(E. Car/stein, Personal communication, 2000). The information required to run the source 

programs developed for PMABB (periodic streamflow model) is given in Appendix- I. 

3.5 APPLICATION STUDY 

In this section, the ability of the proposed nonparametric method in recovering the 

statistical attributes from a known population is tested. The proposed method is then 

applied to simulate monthly streamflows of the Narmada and the Hemavathi rivers. The 

performance of the model is verified in terms of preservation of the following statistical 

attributes: (i) summary statistics (mean, standard deviation and skewness); (ii) serial 

correlations (both within-year and cross-year); (iii) autocorrelations at the aggregated 

annual level; and (iv) state-dependent correlations (introduced by Sharma et al. [ I997] as 

a measure of nonlinear dependence). 

3.5.1 Test with Synthetic Data 

To test the proposed multi-season PMABB method for its ability to recover the 

statistical attributes including the dependence structure (both linear and non-linear) from 

a known population, we use the self-exciting seasonal threshold ARMA (SESTARMA) 

model described by Srinivas and Srinivasan [200Ia]. A two-level Monte-Carlo 

experiment is designed. In the first level, I 00 samples, each of size 4N (N years X 4 

seasons), are generated from SEST ARMA model (known population). These I 00 

77 



samples are referred to as Ievel-l samples. The second level involves generating 100 

replicates, each of size 4N (N years x 4 seasons), for each of the 100 Ievel-l samples, 

using the proposed PMABB method. The 10,000 replicates resulting from the Monte-

Carlo simulations at the second level are referred to as level-2 replicates. 

The SEST ARMA model used for generating Ievel-l samples is: 

First season: 
x1 = 0.2x1_1 + 0.35x1_2 + 0.6 W1 if Xt-I ~ 0 

x, = 0.9xt-J -0.16W,_1 +0.6W, otherwise 

Second season: 
x, = 0.5x,_1 - 0.12WH + 0.7 W, if x1•1 ~ 0 

x, = 0.9xt-J + 0.2x,_2 + 0.7 W, otherwise 

Third season: 
x, = 0.45x,_1 -0.245 W,_1 + 0.5 W, if x,.1 ~ 0 

x, = 0.15x,_1 + 0.3x,_2 + 0.5 W, otherwise 

Fourth season: 
x, = -1.0- 0.5x,_1 - 0.1 W,_1 + 0.8 W, if x,.1 ~ 0 

x, = 0.8x,_1 + 0.2x,_2 + 0.8 W, otherwise (3.11) 

where W1 is a Gaussian random variate with zero mean and unit standard deviation. 

Preservation of the various average statistical attributes over the 100 Ievel-l samples 

(indicative of the population statistics), by the 10000 level-2 replicates generated from 

PMABB would indicate that the candidate model is able to recover the structure 

contained in the population effectively. 
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A comparison of the population statistics and the simulated statistics from 10,000 

replicates, is presented in Figure 3.1 for a typical sample size N = 40 (for brevity) using 

box-plots. In these box-plots, the span of the box (inter-quartile range) and the whiskers 

together indicate the sampling variability associated with each statistic. It is evident from 

the figure that the PMABB model is able to reproduce the summary statistics and the 

dependence structure (both linear and non-linear) fairly well. These results suggest that 

the multi-season PMABB model can recover the statistical attributes including the 

dependence structure from a known population (Fig. 3.1 ). 
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Figure 3.1: Preservation of the summary statistics and the dependence structure of Ievel-l samples by Ievel-
2 replicates from PMABB (L= 2; w = 3; p = 0.90-1.10) model for sample size 40. (A) Season-l;(B) 
Season-2; (C) Season-3; (D) Season-4 and (E) Annual. The circle denotes the average value of 
statistic over 100 Ievel-l samples and the darkened square indicates the mean value of statistic over 
10,000 level-2 replicates. A line in the middle ofthe box represents median. SC-1, SC-2, SC-3, and 
SC-4 denote serial correlations for lag- I, lag-2, lag-3, and lag-4 respectively. AC-1 and AC-2 refer to 
autocorrelations for lag-1 and lag-2 respectively. 

AMF: forward and above median correlation; BMF: forward and below median correlation; 
AMB: backward and above median correlation; BMB: backward and below median correlation. 
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3.5.2. Test with Real Data Sets 

In this section, the proposed multi-season PMABB model is applied to the monthly 

streamflow records measured at (i) Jamtara gauge site Gust downstream of the Bargi dam 

site) on the river Narmada and (ii) Akkiheb.bal gauge site located on the river Hemavathi, 

one of the major tributaries of the river Cauvery. To demonstrate effectiveness of the 

proposed method, the results from the application of the PMABB model is compared 

with those from (i) the periodic k-NN model (Lall and Sharma, 1996; Srinivas and 

Srinivasan, 2001); and (ii) the Hybrid periodic stochastic model, HMBB (Srinivas and 

Srinivasan, 2001a,b). 

The Narmada river rises in the Mikel range in Shahdol district near Amarkantak at an 

elevation of 1050 m. It passes through the states of Madhya Pradesh and Gujarat and 

flows westwards to the Arabian sea. The unregulated streamflows measured at the gauge 

site Jamtara (located at 16 km downstream ofBargi dam site) have been used. Systematic 

gauging has been done at this site since 1949 (NIH, 1996). The average annual flow at 

the dam site is 7197 Mm3
. Most part of the stream flows are received during the southwest 

monsoon months, namely, July to October. The Bargi dam is a multi-purpose project that 

caters to water supply (for domestic and industrial consumption), irrigation and 

hydropower. The index map (Fig. 3 .2) shows the dam and the river gauging site on the 

river Narmada. The monthly inflow data at the Bargi reservoir for the period 1951-1990 

(Table 3.1) as provided in the technical report TR(BR) 143 of the National Institute of 

Hydrology (NIH, 1996) has been used as the first case example for the periodic stochastic 

streamflow modeling in this study. 
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Table 3.1: Monthly Inflow series at the Bargi reservoir for the period 1951-1990 

YEAR JUN 
1951 35.63 

1952 116.3 
1953 0.4 

1954 12.59 

1955 447.16 

1956 158.69 

1957 13.83 

1958 4.4 

1959 2.95 

1960 85.27 

1961 241.28 

1962 77.21 

1963 118.06 

1964 66.73 

1965 103.82 

1966 234.88 

1967 101.37 

1968 17.69 

1969 1.83 

1970 239.99 

1971 1093.1 

1972 6.44 

1973 9.52 

1974 29.37 

1975 87.97 

1976 7.61 

1977 873.99 

1978 189.8 

1979 15.91 

1980 451.76 

1981 119.21 

1982 26.24 

1983 11.8 

1984 30.37 

1985 12.29 

1986 179.71 

1987 5.94 

1988 293.69 

1989 100.98 

1990 35.63 

JUL 
98.66 

2023 

1688.2 

1137.1 

1227.3 

3650.3 

1739.2 

2022.8 

2694.9 

1564.9 

4981.9 

763.68 

963.5 

2712.8 

427.64 

1084.8 

2610.6 

1087.8 

1490.1 

1240.5 

3736.7 

283.75 

1945.8 

454.58 

1817.9 

555 
1939.1 

1602.9 

378.64 

2535.9 

1293.7 

185.86 

716.17 

360.84 

853.82 

2156 

50.9 

2127.7 

417.35 

98.66 

AUG SEP 
2307.1 1164.3 

3745.1 2068.2 

2524.9 1060.3 

1967.5 2398.3 

3179.1 3490.5 

5869.4 1433 

3552.8 1315.3 

1865.1 1620.2 

4152.7 2863.3 

3714.4 853.95 

4555.6 4547.7 

1974 1638.2 

2636.3 2679.9 

4626.1 2682.1 

572.82 1059.4 

2 I 89.5 290.08 

5149.1 2616.8 

3079.2 610.52 

4679.4 1258.1 

3131.7 5231.1 

2477.9 2163.5 

4001.1 1743.5 

4011.9 2719.1 

3178.6 204.49 

4624.6 1654.2 

2096 870.45 

3603.2 1470.2 

2681 776.59 

1377 130.37 

4186.5 2557.8 

1359.2 478.73 

2654.7 1034.7 

2084.9 2497.3 

4742.9 1068 

3521.4 887.65 

1680.5 622.72 

733.4 22.96 

4840.7 920.38 

490.96 221.96 

2307.1 1164.3 

OCT 
355.6 

224.45 

213.65 

307.12 

1257.6 

688.17 

195.33 

1146.3 

536.59 

737.19 

949.99 

260.48 

248.68 

483.77 

109.65 

56.62 

352.06 

205.2 

224.03 

361.04 

783.91 

196.83 

1122.6 

159.44 

954.54 

5 1.46 

386.85 

123.71 

38.22 

240.95 

278.6 

145.66 

719.62 

138.51 

596.99 

498.53 

415.4 

255.13 

328.43 

355.6 

NOV 
51.7 

63.76 

65.56 
79.43 

216.72 

281.78 

59.71 

187.1 

124.44 

128.97 

218.43 

84.62 

110.62 

114.09 

35.97 

23.56 

91.05 

65.56 

89.12 

179.74 

116.77 

93.74 

153.09 

41.14 

156.84 

36.63 

171.29 

55.42 

17.9 

88.07 

79.65 

87.64 

93.42 

72.32 

188.32 

138.32 

177.52 

258.94 

329.31 

51.7 

DEC 
31.6 

34.61 

36.22 

28.92 

84.45 

92.77 

31.98 

66.67 

61.72 

65.74 

131.4 

302.04 

53.67 

62.24 

20.62 

22.42 

132.43 

38.93 

42.13 

64.77 

59.32 

74.29 

84.21 

33.13 

83.36 

31.11 

65.5 

119.28 

13.67 

55.64 

50.1 

40.53 

71.68 

41.25 

47.36 

66.45 

98.23 

190.38 

369.19 

31.6 

JAN 
14.86 

34.12 

21.61 
24.1 

40.49 

97.89 

18.82 

51.68 

68.46 

48.53 

72.34 

55.73 

111.05 

40.63 

18.68 

13.59 

191.24 

32.39 

37.87 

41.88 

46.77 

37.2 

56.75 

24.97 

54.05 

18.84 

65.86 

65.96 

11.3 

49.05 

50.45 

32.25 

110.68 

113.55 

33.63 

79.16 

71.86 

50.96 

211.67 

14.86 

FEB 
9.93 

21.74 

9.48 

18.23 

22.35 

36.09 

13.5 

40.11 

31.73 

45.37 

42.36 

22.05 

24.04 

24.41 

10.77 

8.17 

72 

10.78 

18.44 

35.33 

31.9 

86.41 

35.26 

16.67 

34.07 

13.53 

99.78 

96.3 

5.7 

25.26 

49.83 

33.09 

94.52 

129.33 

125.97 

58.58 

31.45 

52.15 

65.13 

9.93 

MAR APL 
6.43 3.1 

7.77 2.15 

3.89 2.79 

8.25 3.35 

10.69 6.07 

52.5 31.08 

25.72 7.63 

11.7 8.13 

21.06 18.36 

17.89 5.92 

31.23 18.89 

14.83 8.87 

15.6 5.38 

14.86 25.04 

3.92 1.54 

33.94 28.35 

42.48 I 1.28 

6.56 3.52 

46.3 9.09 

28.9 15.51 

16.74 9.39 

14.69 6.81 

16.94 8.37 

13.22 6.24 

16.25 11.53 

10.46 3.4 

55.43 17.78 

27.31 7.77 

3.72 1.98 

17.66 7.52 

18.8 5.95 
12.08 4.21 

30.91 12.32 

19.31 8.17 

54.42 14.19 

56.29 10.23 

25.36 4.16 

40.07 19.16 

121.6 111.73 

6.43 3.1 

MAY 
0.81 

0.91 

1.56 

1.18 

3.57 

8.11 

1.48 

3.37 

5.51 

1.59 

7.13 

8.76 

2.21 

3.34 

1.1 5 

4.74 

6.45 

1.5 

7.39 

14.69 

4.04 

1.5 

3.24 

1.3 

5.68 

2.16 

6.41 

4.79 

0.61 
3.58 

4.41 

1.55 

8.61 

4.47 

5.69 

3.64 

3.19 

4.18 

130.83 

0.81 
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Fig 3.2: Index Map ofBargi Dam Site (Source: Report No. TR(BR) 143, NIH, 1996) 

The Hemavathi river is one of the main tributaries of the river Cauvery (Fig. 3.3). Its 

source is in the Mudigere taluk of Chickmagalur district of Kamataka state in Southern 

India. The river travels a distance of 193 km through the districts of Hassan and Mandya 

before joining the river Cauvery in the water spread of Krishnarajasagar (KRS) reservoir 

in Mandya district. The total drainage area of the river is 5910 km2• The mean monthly 
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Fig 3.3 Location ofHemavathy Subbasin within Cauvery River Basin 
(Source: Report No. TR-53, NIH, 1986) 

temperatures vary in the range 18 to 32 degrees Celsius and the predominant soils are red 

loam and red loamy sand. The rainfall is received from the Southwest monsoon and 

accordingly the flows are significant in the months June to October. The unregulated flow 

data at the gauging station Akkihebbal (shown in Fig. 3.4) has been used as the second 

case example for the periodic stochastic modeling of streamflows in this study. The 

runoff data used are for the period 1916-1974 (58 years) (WRDO, 1976). 
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Fig 3.4 Location of River Gauge Stations in the Hemavathy Subbasin 
(Source: Report No. TR-53, NIH, 1986) 

As mentioned earlier, the following three periodic stochastic models were used to model 

the monthly streamflows at Bargi dam site and at Akkihebbal: (i) k-nearest neighbour 

bootstrap (k-NN), a non-parametric model; (ii) hybrid moving block bootstrap, a hybrid 

of low-order linear parametric model and moving block bootstrap (HMBB); (iii) 

perturbed matched block bootstrap (PMABB), a non-parametric method proposed in this 

study. For the k-NN model, the model order (d) and the number of neighbours (k) were 

arrived at based on the guidelines provided by Lall and Sharma (1996). For the HMBB 

model, the structure of the linear periodic parametric model (used for partial pre-

whitening) and the size of the moving block to be used for bootstrapping the residuals 
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' 
were decided together due to the hybrid character of the model. For the PMABB model, 

the size of the within-year matched block size to be used for bootstrapping the flows, the 

, number of adjoining elements (band width) to be considered in the rank matching 

procedure, and the weighting parameter to be used in smoothing had to be decided 

together through a detailed trial and error process. In case of both the sites and for all the 

three methods adopted, the selection of the appropriate combination of the models and 

the parameters was done through a detailed verification followed by rigorous validation 

process (based on the preservation of storage and drought related statistics at various 

demand levels/truncation levels). The verification was based on the reproducibility of the 

summary statistics, the serial correlation structure for four lags, the one-lag state­

dependent correlations of the historical monthly streamflows. It is to be mentioned that 

the ability of the models to simulate non-linear dependence is portrayed using state­

dependent correlations suggested by Sharma et al. (1997). 

3.5.2.1 Case Example - 1: Jamtara (Bargi dam site) on river Narmada 

For all the three models attempted, the alternative model structure choices considered 

and the parameters of the selected model structure are presented in Table 3.2 A 

comparative analysis of the efficacy of the three types of models in modeling the monthly 

streamflows at Bargi dam site, is presented in the following few paragraphs. 
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Table 3.2: Parameters of the Selected Models- Bargi dam site. 

k-Nearest Neighbour Model: 

HMBBModel: 

PMABB Model: 

Reproduction of summary statistics: 

k (number of neighbours for resampling) = 8; 

d (model order) =I. 

PAR(l) model with no transformation 

Non-overlapping block size L = 24 months (for 

resampling) 

Matched Block Size: L = 4 

Number of elements taken for resampling: w = 5 

Smoothing Parameter: p = 0.9- 1.1 

The reproduction of the summary statistics of the monthly flows is presented in Table 

3.3.The means of the monthly flows are underestimated by k-NN in 6 out of 12 months; 

HMBB underestimates the same in 4 out of 12 months and over estimates the same in 2 

out of 12 months, while the proposed PMABB model is able to reproduce the mean 

monthly flows well in all the 12 months. The standard deviations of the monthly flows 

are underestimated by both k-NN and HMBB in 6 out of 12 months; while in general, 

PMABB exhibits much less bias in reproducing the standard deviation of the monthly 

flows (Table 3.3). It may be observed from Table 3.3 that the skewness coefficients of the 

monthly flows are preserved well in general by all the 3 models considered, except in 

three of the low flow months. Even in that case, the proposed PMABB model seems to 

perform better than the k-NN and the HMBB models. Thus, the PMABB model 

reproduces the summary statistics of the historical flows of the Narmada river at Bargi 

dam site better than the other two models considered, namely, k-NN and HMBB. 
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Table 3.3: Reproduction of Summary Statistics: Monthly Streamflows- Bargi Dam site 

Month Model Mean Std. Deviation Skewness 
June Historical 144.25 229.73 2.89 

k-NN 119.82 175.26 2.62 
HMBB 154.24 230.05 2.48 
PMABB 145.69 218.83 2.63 

July Historical 1503.1 I 095.2 1.08 
k-NN 1481.2 1074.3 1.18 
HMBB 1556.5 1081.4 0.92 
PMABB 1523.2 1078.1 1.01 

August Historical 3072.3 1336.7 -0.06 
k-NN 3002 1325.3 -0.08 
HMBB 3111.2 1303.8 -0.04 
PMABB 3040.3 1386.5 -0.07 

September Historical 1613.5 1173.6 1.14 
k-NN 1600.8 1132.9 1.06 
HMBB 1645 1155.3 1 
PMABB 1593 1167.2 0.99 

October Historical 419.2 324.18 1.15 
k-NN 414.95 314.93 1.12 
HMBB 421.42 323.39 1.1 
PMABB 414.72 318.99 1.15 

November Historical 118.67 73.19 1.04 
k-NN 117.45 70.14 1.08 
HMBB 116.55 67.93 0.83 
PMABB 118.57 73.26 0.97 

December Historical 76.92 70.88 2.86 
k-NN 73.43 60.43 2.57 
HMBB 73.63 59.62 2.42 
PMABB 76.97 68.76 2.59 

January Historical 56.95 43.38 2.07 
k-NN 55.68 38.76 1.81 
HMBB 54.96 38.37 1.78 
PMABB 56.89 42.54 1.89 

February Historical 41.07 32.5 1.34 
k-NN 41.64 32.31 1.31 
HMBB 40.54 31.19 1.3 
PMABB 40.83 31.83 1.33 

March Historical 25.02 21.96 2.5 
k-NN 23.41 18.01 1.61 
HMBB 23.66 18.11 1.57 
PMABB 24.95 21.26 1.93 

April Historical 12.49 17.83 4.79 
k-NN 10.34 9.23 2.02 
HMBB 11.08 11.96 2.56 
PMABB 12.56 16.21 3.14 

May Historical 7.32 20.5 6.05 
k-NN 4.32 4.12 1.55 
HMBB 5.41 10.59 2.88 
PMABB 7.39 17.01 

L_ __ 3.§9_ --- -
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Preservation of Serial Correlations 

The preservation of serial correlations for lags 1-4 are shown in Fig. 3.5a. From Fig. 3.5a 

it is observed that .k-NN model is not able to preserve the serial correlations for 5 out of 

12 months for lags 1-4. Similarly it is observed (Fig 3.5a) that HMBB models are not 

able to preserve the serial correlations in: 5 out of 12 months for both lags 1 and 2; 2 out 

of 12 months for lag-3 serial correlation and 1 out of 12 months for lag-4 serial 

correlation. In case of PMABB model, it is observed (Fig. 3.5a) that serial correlations 

for lag-1 are preserved well for all the months; whereas, lag-2, lag-3 and lag-4 serial 

correlations display some bias in a few months. The fact that PMABB model could 

simulate the linear correlations fairly well by resampling short within-year blocks (L = 4), 

is quite striking. Here, the PMABB model is primarily gaining from the conditional 

resampling based on matching the end elements of the within-year blocks. 

Preservation of First order state-dependent correlations 

The preservation of the first order state-dependent correlations namely, above median 

backward (AMB), below median backward (BMB), above median forward (AMF), and 

below median forward (BMF) proposed by Sharma et al. ( 1997), has been presented in 

Fig. 3.6. From the Fig 3.6 it may be observed that all the three models have performed 

reasonably well in preserving BMB and BMF correlations. However, it may be seen that 

k-NN and HMBB models underestimate the above median correlations AMB and AMF 

in 4 out of 12 months, compared with PMABB. 
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3.5.2.2 Case Example- 2: River Hemavathi (station: Akkihebbal) 

For all the three models attempted, the alternative model structure choices considered 

and the parameters of the selected models are presented in Table 3.4 A comparative 

analysis of the efficacy of the three types of models in modeling the monthly streamflows 

for river Hemavathi (measured at Akkihebbal), is presented in the following few 

paragraphs. 

Table 3.4 Parameters of the Selected Models- Akkihebbal. 

k-Nearest Neighbour Model: 

HMBBModel: 

PMABB Model: 

Reproduction of summary statistics: 

k (number of neighbours for resampling) = 8; 

d (model order) =1. 

PAR( 1) model with no transformation 

Non-overlapping block size L = 24 months (for 

resampling of the residuals) 

Matched Block Size: L = 4 

Number of elements taken for resampling: w = 5 

Smoothing Parameter: p = 0. 9 - 1.1 

The reproduction of the summary statistics of the monthly flows is presented in Table 

3.5. The means of monthly flows are generally well reproduced by all the three models 

excepting some bias in 1 out of 12 months. The sta.'ldard deviations of the monthly flows 

is underestimated by k-NN model in 4 out of 12 months and in 2 out of 12 months by 

HMBB model; while, PMABB model underestimates the same in 1 out of 12 months. 

The skewness coefficients of the monthly flows are well preserved, in general, by all the 

three models considered (Table 3.5). 
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Table 3.5: R d fS - Statistics: Monthly St f1 Akkihebbal 
Month Model Mean Std. Deviation Skewness 
June Historical 149.56 125.23 1.62 

k-NN 145.79 123.15 1.59 
HMBB 142.9 105.32 0.92 
PMABB 144.85 109.07 1.02 

July Historical 856.11 519.59 2.06 
k-NN 878.2 514.88 1.8 
HMBB 863.92 509.8 1.91 
PMABB 868.63 500.32 1.87 

August Historical 665.29 351.74 1.09 
k-NN 667.07 351.04 1.09 
HMBB 664.27 348.96 1.06 
PMABB 660.98 350.82 1.13 

September Historical 297.82 148.24 1.49 
k-NN 291.95 141.84 1.43 
HMBB 298.26 146.1 1.36 
PMABB 295.61 147.81 1.42 

October Historical 285.34 184.45 1.5 
k-NN 281.42 174.32 1.43 
HMBB 286.88 180.15 1.41 
PMABB 283.95 184.05 1.45 

November Historical 127.16 96.13 1.35 
k-NN 128.92 95.91 1.38 
HMBB 126.09 92.33 1.35 
PMABB 125.08 94.02 1.37 

December Historical 54.67 32.26 2.36 
k-NN 54.77 31.79 1.76 
HMBB 54.67 31.26 1.77 
PMABB 54.45 31.39 1.83 

January Historical 29.94 10.39 0.35 
k-NN 29.51 9.65 0.24 
HMBB 29.99 10.39 0.33 
PMABB 29.81 10.45 0.38 

February Historical 18.25 6.81 -0.13 
k-NN 18.05 6.54 -0.05 
HMBB 18.11 6.61 -0.2 
PMABB 18.19 6.82 -0.04 

March Historical 13.68 6.65 -0.16 
k-NN 13.76 6.62 -0.18 
HMBB 13.69 6.52 -0.17 
PMABB 13.63 6.68 -0.1 

April Historical 14.24 7.49 -0.05 
k-NN 14.22 7.32 -0.01 
HMBB 14.33 7.43 -0.06 
PMABB 14.22 7.48 -0.01 

May Historical 35.57 28.27 1.64 
k-NN 34.95 26.54 1.52 
HMBB 36.29 27.86 1.54 
PMABB 35.16 27.27 1.51 
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Preservation of Serial Correlations: 

From Fig. 3.5b it is observed that k-NN model is not able to preserve: the lag-1 serial 

correlations in 5 out of 12 months; lag-2 serial correlations in 6 out of 12 months; and 

lag-3 and lag-4 serial correlations in 7 out of 12 months. While, in case ofHMBB model, 

the lag-1 to lag-4 serial correlations are not preserved in only one out of 12 months. In 

case of PMABB model, it is observed (Fig. 3.5b) that the lag-1 serial correlations are 

preserved well, while, the lag-2 and the lag-3 serial correlations are not preserved 

satisfactorily in 2 out of 12 months and the lag-4 serial correlations are not preserved well 

in 1 out of 12 months. 

Preservation of First order state-dependent correlations: 

The preservation of the first order state-dependent correlations have been presented in 

Fig. 3.7. From the Fig 3.7, it may be observed that all the three models have performed 

reasonably well in preserving BMB and BMF correlations. However, it may be seen that 

the k-NN model exhibits more relative bias in the above median correlations AMB and 

AMF in a few months, when compared with the HMBB and the PMABB models. 
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3.5.3 Performance Validation of the Stochastic Streamflow Models 

The simulations from the models are validated by examining their ability to (i) predict 

reservoir storage capacity and (ii) preserve critical run characteristics (validation statistics 

according to Stedinger and Taylor, 1982). Herein, the reservoir storage capacities 

required to cater to yields of 50% Mean Annual Flow (MAF) to 90% MAF (at 5% MAF 

intervals) are computed using the sequent peak algorithm (Loucks et al.; 1981, p.235), 

assuming the demand to be fixed and uniform over the twelve months of the water year. 

Drought characteristics are quantified using the theory of runs (Yevjevich, 1967), that is 

based on a threshold level, referred to as truncation. According to this theory, drought is 

viewed as a negative run that denotes an uninterrupted sequence of streamflow values 

that lies below the specified truncation level. The run characteristics considered for the 

evaluation of the relative performance of the three nonparametric models are: (i) 

Maximum Run Length (MARL), (ii) Maximum Run Sum (MARS), (iii) Mean Run 

Length (MERL), and (iv) Mean Run Sum (MERS). Herein, the truncation levels have 

been chosen as percentages of the historical mean monthly flows (MMF) (50% to 100% 

MMF at intervals of 5% MMF). 

Let "dl;" denote the length and s i denote the volume of water below a specified 

truncation level (i.e., deficit volume in Million m3
) for the i th negative run. Then, the 

aforementioned run characteristics can be expresses as: 

MARL=max [dli, ... ,d!NR]; 

MARS= max [si , ... ,sNR ]; 

(3.12) 

(3.13) 
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NR 
Ldl; 
i :;:::1 

MERL= NR (3.14) 

NR 
LS; 
i:;: 1 

MERS= NR (3.15) 

where NR denotes the total number of runs in the flow sequence (historical/synthetic). 

3.5.3.1 Prediction of Reservoir Storage Capacity- Bargi dam site 

Table 3.6: shows that both k-NN and PMABB models overestimate the reservoir storage 

capacity in the range of demand levels 50% to 75% MAF with low variance as well. On 

the other hand, the HMBB model predicts the reservoir storage capacity better in the 

range of above demand levels, while it underestimates the same at higher demand levels. 

Table 3.6: Comparison of Prediction of Reservoir Storage Capacity -Bargi Dam site 
Demand Hist. Mean Synthetic Capacity Relative Bias Relative RMSE 
(%MAF) Capacity k·NN HMBB PMABB k-NN HMBB PMABB k-NN HMBB PMABB 

50 3562.3 4338.6 3822.4 4475 -0.218 -0.073 -0.256 0.333 0.168 0.333 
55 4153.1 5120.8 4549.9 5237.5 -0.233 -0.096 -0.261 0.353 0.194 0.344 
60 4744.1 5984.9 5394.6 6065.7 -0.262 -0.137 -0.279 0.386 0.245 0.369 
65 5548.1 6948.7 6351.4 6997.4 -0.252 -0.145 -0.261 0.389 0.274 0.366 
70 6493.6 8072.7 7384.9 8084.9 -0.243 -0.137 -0.245 0.393 0.29 0.369 
75 7439 9429.1 8548.2 9395.7 -0.268 -0.149 -0.263 0.426 0.318 0.407 
80 9584 11176 10014 11077 -0.166 -0.045 -0.156 0.372 0.287 0.352 
85 13395 13620 11888 13362 -0.017 0.113 0.002 0.338 0.295 0.311 
90 18292 17656 14444 16803 O.o35 0.21 0.081 0.423 0.359 0.361 
95 23846 24642 18692 22954 -0.033 0.216 0.037 0.567 0.431 0.471 

3.5.3.2 Prediction of Reservoir Storage Capacity - Akkihebbal 

Table 3.7 shows that all three models (k-NN, HMBB and PMABB) perform well in 

predicting the reservoir storage capacity. However, k-NN underestimates the reservoir 
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storage capacity at high demand levels, whereas, on the other hand PMABB model over 

predicts the reservoir storage capacity at lower demand levels. 

Table 3.7: Comparison of Prediction of Reservoir Storage Capacity- Akkihebbal 
Demand Hist. Mean Synthetic Capacity Relative Bias Relative RMSE 
(%MAF) Capacity k-NN HMBB PMABB k-NN HMBB PMABB k-NN HMBB PMABB 

50 736.5 716.19 727.07 737.19 0.028 0.013 -0.001 0.069 0.032 0.089 
55 826.75 837.99 820.47 856.52 -0.014 0.008 -0.036 0.101 0.034 0.129 
60 952.35 1004.3 944.76 1019.8 -0.055 0.008 -0.071 0.145 0.066 0.164 
65 1164.7 1213.9 1154.7 1239.4 -0.042 0.009 -0.064 0.152 0.093 0.167 
70 1385.8 1468.3 1420.3 1526.5 -0.06 -0.025 -0.102 0.175 0.124 0.197 
75 1711.7 1779.8 1742.4 1900.3 -0.04 -0.018 -0.11 0.192 0.148 0.226 
80 2049.5 2199.8 2182.6 2390.3 -0.073 -0.065 -0.166 0.238 0.203 0.291 
85 2855.5 2811.2 2886.2 3075 0.016 -0.011 -0.077 0.256 0.239 0.268 
90 4343.3 3775.8 4044.1 4181.1 0.131 0.069 0.037 0.315 0.305 0.299 
95 6455.7 5633.2 6315.3 6297.4 0.127 0.022 0.025 0.445 0.49 0.454 

3.5.3.3 Prediction of Drought Characteristics - Bargi dam site: 

A discussion on the comparative analysis of the prediction of the critical and the mean 

drought characteristics is provided in the following few paragraphs, based on the results 

presented in Table 3.8. 

Table 3.8: Comparison of Prediction of critical Drought Characteristics - Bargi Dam site 

TL Hist Model TL Hist Model 
k-NN HMBB PMABB k-NN HMBB PMABB 
k-8 L-24 W5 - NWB3 k-8 L-24 W5 -NWB3 

Maximum Run Length (years) Maximum Run Sum (million m3
) 

50 12 11.51 11 .87 11 .67 50 2353.4 2169.8 2197.9 2357.9 
(2.37) (2.95) (1.63) (410.2) (437.9) (301.1 ) 
[28.2) (42.2) [27.2) [27.6) (62.2) [54.6) 

55 12 11.87 12.5 12.03 55 2670.4 2516.1 2539 2702.9 
(2.37) (2.85) (1.71) (468.9) (486.5) (316.6) 
(32.2) (44.8] [36.2) [31.6) [63.4] (59.4) 

60 12 12.39 12.88 12.28 60 2987.4 2863.8 2877.4 3049.3 
(2.71) (2.86) (1.75) (514) (537.7) 

, 
(330) 

[40.2] [48.8] (41.2) [38.6) [64.8] [62.6) 
65 12 13.14 13.81 12.7 65 3304.5 3242.8 3239.8 3398.1 

(2.95) (3.29) ( 1.88) (591.4) (607.6) (343) 
[50.6) [60.4] [49.8) [44.6) [65.2] [66.8) 

70 14 14.95 16.08 13.57 70 3621.5 3710.1 3706.5 3755 
(3.83) (3.87) (2.07) (814.5) (731.8) (360.5) 
(45.8) [57.4] [29) [51.2) [69.2] [71.2) 

75 14 16.22 16.74 14.61 75 3938.5 4168.1 4101 .9 4123.3 
(3.97) (3.8) (2.19) (949.4) (819.9) (380.1) 
(63.8] [73.6] (49.6) [60.4) [70.4] [78) 

80 14 17.48 16.98 15.61 80 4255.5 4679.1 4523.2 4519.7 
(4.36) (3.73) (2.38) (1106.9) (913.2) (465.8) 
[78) [75.6] [67.4) [67.4) [74.2) [81.8) 
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85 14 18.79 17.41 16.38 85 4572.9 5313.2 4996 4937.9 
4{.63) (3.65) (2.52) (1354.5) (1020.2) (571.7) 
[86] [79.8) [77.2] [73.6] [76.6] [86.6] 

90 18 19.91 20.02 17.23 90 4890.6 5889.5 5573.5 5391.7 
(4.94) (4.16) (2.68) (1572.8) (1203.1) (723.5) 
[52.6] [53) [29.4] [77.4] [77.6] [89.8] 

95 18 20.25 20.65 18.08 95 5208.2 6467.2 6057.8 5919 
(4.99) (4.22) (2.99) (1766.8) (1345.5) (967.4) 
[57.4] [59.2) [432] [79.6) [79.8) [91.4) 

100 18 20.93 21 .85 18.54 100 5529.7 7096.4 6593.3 6420.8 
(5.13) (4.37) (2.93) (1930.3) (1492.4) (1112) 
[63.2] [71] [49.6] [82.8] [81) [92.8] 

Mean Run Length (years) Mean Run Sum (million m3
) 

so 3.02 3 3.04 3.06 so 301.8 300.6 285.4 328.3 
(0.39) (0.39) (0.41) (72.7) (74) (86.9) 
[45.8] [49.6] [50.4] [48.6] [38.8] [57.4] 

55 2.98 2.86 3.08 3.15 55 318.9 308.2 304.9 363 
(0.37) (0.42) (0.4) (75.1) (75.9) (91.3) 
[35.6) [55.8] [63.2) [43] [40.4] [66) 

60 3.05 3.02 3.18 3.24 60 352.6 350.1 342.1 396.9 
(0.38) (0.42) (0.37) (79.5) (79.3) (92.3) 
[43.8) [59.2] [67.6) [47.6) [43) [66.2] 

65 3.11 3.11 3.2 3.39 65 386.9 386.9 370.9 446.9 
(0.36) (0.36) (0.36) (84.2) (80.7) (96.6) 
[48.8] [58.2] [75.8) [48.2) [40.4) [71.8) 

70 3.51 3.45 3.66 3.66 70 476.6 474.3 470.9 521.6 
(0.41) (0.43) (0.38) (100) (101.2) (108.8) 
[44] [62.8] [64] [47] [45.6] [65.2] 

75 3.88 3.84 4 .02 3.94 75 571.7 569.9 558.6 607.6 
(0.45) (0.48) (0.41) (118.1) (116.9) (124.5) 
[43.2) [57.2] [52.2) [47.2) [42] [60.8] 

80 4.05 4.04 3.99 4.1 80 644.9 649 604.3 681.5 
(0.48) (0.53) (0.44) (130.7) (123.5) ( 138.1) 
[46.6) [41.6] [54.2] [48.6] [33.2] [59.6] 

85 4.27 4.18 4 .02 4.17 85 732.5 724.7 657.2 746.1 
(0.48) (0.5) (0.47) (139) (130.3) (145.4) 
(41.4] [29.4) [38.8] [47) [25] [52.4] 

90 4.17 4.2 4.1 4.27 90 767.9 786.7 726.7 827.7 
(0.48) (0.6) (0.5) (145.3) (151) (I 58.6) 
[50.6] [40.4] [55.4) [53.2] [36.2] [62.8] 

95 4.35 4.39 4.25 4.44 95 884.3 905.1 834 929.6 
(0.49) (0.63) (0.52) (161.8) (167.4) (174.8) 
[48.4] [37.4] [52) [53.4] [33.8] [57.8] 

100 4.57 4.54 4.58 4.63 100 1005.2 1012.9 968.5 1053.3 
(0.5) (0.66) (0.54) (175.3) (184.6) (192) 
[45] [47.6) [50.8] [49.6) [37.6] [57.6] 

Maximum Run Length (MARL) 

At higher truncations levels (90%-100% MAF), it is observed that both k-NN and HMBB 

overestimate the maximum run length (MARL), whereas PMABB is able to give good 

prediction. Similarly for intermediate truncation levels (70%-85% MAF), both k-NN and 

HMBB overestimate the MARL, while PMABB provides reasonably good predictions. 
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At lower truncation levels (50%-65%), PMABB predicts MARL better than the other 

models k-NN and HMBB. 

Maximum Run Sum (MARS) 

At higher truncations levels (90%-100% MAF), it is observed that k-NN highly 

overestimates the maximum run sum (MARS), whereas both HMBB and PMABB 

models slightly overestimates the MARS. All the models reasonably predict well at 

intermediate truncation levels (70%-80%). At lower truncation levels (50%-65%), both k­

NN and HMBB underestimates MARS, whereas PMABB model gives very good 

prediction. 

Mean Run Length (MERL) 

All the models are able to preserve the mean run length (MERL) at all truncation levels. 

Mean Run Sum (MERS) 

At all the truncation levels, the mean run sum (MERS) is very well preserved by k-NN 

model. On the other hand, HMBB slightly underestimates the MERS, while PMABB 

slightly overestimates the same. 

3.5.3.4 Preservation of Drought Characteristics- Akkihebbal: 

A discussion on the comparative analysis of the prediction of the critical and the mean 

drought characteristics is provided in the following few paragraphs, based on the results 

presented in Table 3.9. 
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Table 3.9: Comparison of Prediction of critical Drought Characteristics- Akkihebbal 

TL Hist Model TL Hist Model 
k-NN HMBB PMABB k-NN HMBB PMABB 

k=8 L=24 ( W=5;NWB =3) k=8 L=24 (W=5;NWB =3) 
Maximum Run Length (years) Maximum Run Sum (million m3

) 

50 8 5.33 6 .66 5.9 50 297.3 301.9 302.2 305.9 
(1.3) (1 .85) (1.44) (50) (28.1) (71 .9) 
[2.2J [2J [OJ [33.2J [72.6J [51.4J 

55 8 6.07 6 .74 6.37 55 490.1 380.7 443.3 411 .6 
(1.42) (1 .81) (1 .18) (71.8) (73.7) (111.4) 
[5.2J [5.2J [OJ [7.8J [30.8J [28.2] 

60 8 7.42 7.53 7.05 60 595.3 460 534.1 513.9 
(1.55) (0.97) (1.39) (88.4) (97.8) (130.2) 
[21.6J [6.4J [12.4J [7.2J [30.8J [32.8] 

65 12 8.4 10.26 8 .21 65 700.5 552.1 630.1 607.5 
( 1.82) (2.58) (1 .63) (103.5) (123.2) (149) 
[2.4J [7] [0.4] [8.4] [31 .4] [32.8] 

70 12 9.44 10.33 9 .66 70 805.7 651.4 730.7 711 .1 
(1.87) (2.53) (1.52) (118.4) (141.1) (158.2) 

[5J [7.4] [1.8] [10.4J [31.4] [33] 
75 12 11.23 11.21 10.78 75 911.0 774.3 840.3 818.8 

(2.33) (1.79) (1 .31) (133.7) (152) (165.9) 
[21.4J [11.6J [7.8] [13.2) [31.4] [33] 

80 12 12.8 11.99 12.48 80 1016.2 908.1 953.9 942.3 
(2.71) (1.82) (2.13) (161.2) (162. 1) (175.3) 
[43.8) [17.2] [39.4] [19) [33.8] [36] 

85 14 13.53 13.47 14.57 85 1121.4 1039.9 1092 1087.2 
(2.91) (1.81) (3.16) (182.6) (177) (201.5) 
[27.2] [12.2) [40.2] [24.6) [38.4) [42) 

90 18 15.72 16.92 16.42 90 1226.7 1226.5 1254.6 1262.4 
(3 .67) (3.77) (3.69) (232.2) (206. 7) (232.8) 
[19.2) [36) [25.2] [40.4J [43.8) [52.8J 

95 23 17.01 20.93 18.22 95 1390.4 1410.3 1472.3 1471 .7 
(3 .83) (5.19) (4.1) (272.8) (268.7) (284.1) 

[5) [34.6] [10.8) [41.4) [44) [56.2] 
100 23 18.78 21.47 19.58 100 1608.7 1665.2 1689.1 1705.6 

(4.45) (4.91) (4.3) (369.1) (315.4) (336.3) 
[12.4) [35.6) [16.8) (43.8) [40.2] [57.2] 

Mean Run Length (years) Mean Run Sum (million m3
) 

50 1.59 1.59 1.61 1.63 50 39 37.8 39.5 38.3 
(0.11) (0.1) (0.11) (6.2) (7.8) (6.8) 
[49.4) [55.6] [65] [39.8) [48.6] [44.6] 

55 1.75 1.73 1.75 1.75 55 48.9 46.7 50.1 48.9) 
(0.11) (0.11) (0.11) (7.2) (9.4) (7.6 
[38.8J [46.4] [49) [34.4) [51.8] [47] 

60 1.86 1.85 1.88 1.88 60 63.1 60.8 63.4 62 
(0.12) (0.12) (0.12) (8.3) (10.8) (8.7) 
[42.2) [54.4] [53.2] [38.2) . [48.2) [43.8] 

65 1.97 1.97 2.01 2.03 65 79 76.6 79.6 78.2 
(0.14) (0.15) (0.14) (9.6) (12.3) (10) 
[45.6] [59.6] [64.2] [38.4) [49.8] [45.4] 

70 2.19 2.19 2.09 2 .23 70 99.2 96.7 94.1 97 
(0.15) (0.15) (0.17) (I 1.2) (13.3) (11 .8) 
[45.4) [24] [56.6] [42.4) [32) [41) 

75 2.45 2.47 2.45 2.48 75 120.8 I 18.4 119.5 119.8 
(0.18) (0.19) (0.19) (13.4) (15.2) (13.5) 
[51.6] [49.6) [57.6] [42.4) [46.8) [45) 

80 2.76 2.78 2.76 2.8 80 149.1 146.5 146.7 149.6 
(0.22) (0.24) (0.23) (16) (17) (16.4) 
[52.6] [48.2) [54.2) [41.2) [44.6] [50.8) 

85 3.02 3 3.04 3.09 85 183.5 178.4 182.1 184 
(0.23) (0.28) (0.27) (I 8.4) (19.7) (19.7) 
[42.4) [52) [56.8] [35.4] [47.8) [50.8) 
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90 3.32 3.29 3.32 3.34 90 227.1 221.1 225 223 
(0.27) (0.31) (0.31) (23.1) (24.6) (24) 
[45.2) (50.4] (49.21 [36.4) (47] (43.4] 

95 3.5 3.53 3.53 3.58 95 266.5 264.3 265 265.2 
(0.3) (0.37) (0.34) (27.8) (30) (28.6) 
[51.8) (51.2] (56.4] [43.8) (46.4] (47.6] 

100 3.77 3.78 3.79 3.79 100 310.8 307.4 308.9 307.8 
(0.33) (0.37) (0.35) (33.3) (33.3) (33) 
[50.8) (50) (50.2] [44) [45.8) [45.2) 

Maximum Run Length (MARL) 

At all truncation levels, it is observed that a considerable bias is exhibited by all the three 

models. The HMBB model (with L=24) is seen to be somewhat better than the other two 

models in the prediction of MARL. 

Maximum Run Sum (MARS) 

At higher truncations levels (90%-1 00% MAF), it is observed that k-NN exhibits less 

bias compared with the other two models. However, at lower and intermediate truncation 

levels (55%-85%MAF), the k-NN model under predicts MARS much more than HMBB 

andPMABB. 

Mean Run Length (MERL) 

All the models are able to preserve the mean run length (MERL) well at all truncation 

levels. 

Mean Run Sum (MERS) 

All the models are able to preserve the mean run· sum (MERS) well at all truncation 

levels. 
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It is to be mentioned that in case of both the streamflow examples, the HMBB model 

requires a block size of 24 months to be used for resampling the residuals in order to 

preserve the serial correlations, and to predict the reservoir storage statistics and the 

critical drought characteristics, while the PMABB model shows a better 

preservation/prediction of these statistics even by using a block size of 4. This, in turn, 

gives rise to a better variety of simulations for the PMABB model compared with the 

HMBB model (with a block size of 24 months). On the other hand, in order to achieve 

sufficient variety in simulations, if a within-year block size (L < 12 months) is used for 

resampling the residuals in case of the HMBB model, significant bias is exhibited in the 

preservations of the serial correlations, the state-dependent correlations and the prediction 

of the reservoir storage statistics and the critical drought characteristics, thus resulting in 

a poor performance of the model. This is not shown here for brevity. 

In summary, these results strongly suggest that the PMABB model proposed in this work 

is a potential nonparametric method, which is effective in simulating the multi-season 

streamflows. 

3.6 SELECTION OF MODEL PARAMETERS 

The PMABB method has been found to be effective in providing acceptable simulations 

for various alternate combinations of block size (L), bandwidth (w) and perturbation 

range (p ). Choice of inappropriate parameters could result in either underestimation of 

the critical dry spells or overestimation of the wet spells at certain truncations levels. If a 

smaller value of L is selected, the PMABB would be ineffective in reproducing higher 

lag within-year serial correlations and cross-year serial correlations. Consequently, the 
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model cannot capture the historical trend of critical run length. Preservation of these 

correlations would be of interest to the investigator especially when the dependence 

structure underlying the hydrologic process is strong. From the various streamflow 

examples tried out in this research work (although only two are presented in this report), 

it is found that a reasonable block size of L = 4 or L = 6 would be sufficient to reproduce 

the within-year and the cross-year dependence so that the critical drought characteristics 

and the storage statistics are modeled efficiently. It is worth mentioning that a much 

longer block size (more than 12 months), may result in repeating the observed patterns, 

thus reducing the chance of simulating innovative patterns. Hence, caution has to be 

exercised in opting for a long block size. 

The bandwidth w has a dire~t effect on the variety obtained in simulations. A large 

value for w implies resampling from a larger domain of nearest neighbors, which would 

enhance the possibility of simulating innovative patterns. However, with a larger w, there 

is a chance of resampling more distant neighboring blocks and as a result the historical 

dependence structure may not be well preserved in simulations. Consequently, the model 

would not be able to capture complex trends and jumps in the critical run length. Thus, 

selecting the combination of L and w together is important from the point of reducing the 

bias in simulations, while ensuring sufficient variety as well as variability in the synthetic 

simulations. 

Increase in the range of perturbation, p[1-3, 1+3], while enhancing smoothing and 

extrapolation in simulations,may also increase the bias in simulating the historical 

dependence structure and other important statistics of concern. Consequently, the 
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validation performance of the model, measured in terms of prediction of storage and run 

characteristics, drops (not shown herein for brevity). It is suggested that with a sample 

size N of 50 to 200 years, the choice of 8 could be varied from 0 to 0.15. Visual 

comparison of simulated attributes (summary statistics, dependence structure etc.) with 

historical sample attributes could be tried for various combinations of the parameters L, w 

and p to choose the near-optimal set of parameters that would result in the most 

acceptable stochastic simulation of the observed streamflow data for the desired practical 

use. Although this research study considers only equally sized within-year blocks, it is 

possible to adopt unequal (variable) within-year block sizes. Future research can focus 

towards formulating appropriate optimization models that can help in automating the 

selection of these parameters. 

3.7 SUMMARY AND CONCLUSIONS 

A new nonparametric method of conditional bootstrap is presented for simulating 

multiseason hydrologic time series. It resamples non-overlapping within-year blocks of 

hydrologic data (formed from the observed time series) using the rank matching rule of 

Car/stein et al. [ 1998]. This algorithm searches the historical record to find neighbouring 

blocks whose ends closely match the end element of the current block and subsequently 

resamples their successor blocks. The resampled blocks are perturbed using a weighted 

smoothing strategy with a window size of 12 months to achieve smoothing and 

extrapolation in simulations. 

The proposed method, termed perturbed matched-block bootstrap (PMABB), is shown to 

be efficient in reproducing a wide variety of statistical attributes for both hypothetical and 
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real data sets. The verification and validation results presented here support PMABB as a 

plausibly better alternative to the non-parametric method "k-nearest neighbour bootstrap 

of Lall and Sharma ( 1996)" and the more recently proposed hybrid periodic model 

HMBB of Srinivas and Srinivasan [200 1 a,b] in simulating periodic strearnflows. It is 

believed that PMABB can provide a rather flexible and adaptive method for simulating 

time series at finer time scales (e.g., weekly, daily and hourly), where there is 

progressively more structure to exploit. 

The method provides simulations that are efficient in reproducing summary statistics, 

dependence structure and the salient features of the marginal distribution, without 

, compromising on smoothing, extrapolation and variety in simulations, so that better 

prediction of storage capacity and critical run characteristics for water resources design 

is achieved. 
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CHAPTER4 

PERFORMANCE OF WATER SUPPLY RESERVOIR SYSTEMS 

4.1 INTRODUCTION 

The storage-yield relationship has been the conventional tool used by water resources 

engineers to determine the required storage capacity of a reservoir to deliver a speCified 

target yield. The most commonly used sequential procedure for determining the storage­

yield relationship has been the mass curve method proposed by Rippl (1883), which 

assumes that both inflows and demand are known functions of time. In this method, the 

minimum storage that is required to provide the target yield with absolutely no water 

shortages over the historical period would be determined graphically. An automated 

version of the mass curve method is the sequent peak algorithm (Thomas and Burden, 

1963). In this procedure, double cycling takes care of the case when critical sequence of 

flows occurs at the end of the streamflow record. Fiering ( 1967) has identified the 

principal shortcomings of using historical flow record in conjunction with the mass curve 

or the sequent peak algorithm. The classical "safe yield estimate" is simply a single 

estimate of the yield that could be sustained by the system during the worst drought on 

record. Almost certainly, a more severe drought will occur, in future, but the traditional 

safe yield analysis does not provide any estimate of risk, thus the estimate cannot be 

really considered "safe yield". Thus, any single value of the safe yield should always be 

accompanied by a clear account of its statistical significance to avoid potential surprises. 

Vogel (1985) and Vogel and Stedinger (1988) have shown that by using stochastic 

streamflow models, the precision of storage capacity estimates can be improved 



drastically, compared to single historical flow based estimates. They have shown this to 

be valid, even if the correct model is not identified. 

4.2 OVER-YEAR AND WITHIN-YEAR RESERVOIR SYSTEMS 

Based on storage capacity, inflow pattern and demand, the reservoir systems can be 

classified as over-year (or carry-over) and within-year systems. Within-year systems are 

sensitive to seasonal variations of both inflow and draft. Studies that model the within­

year Storage-Reliability-Yield (S-R-Y) relationships are more realistic. However, these 

relationships are difficult to generalize due to the large number of parameters associated 

with periodic stochastic streamflow models. Hence, a case-wise study is required to 

obtain S-R-Y relationships for within-year reservoirs. The failure duration of a within­

year system is generally less than a year whereas for over-year reservoir systems, it is 

more than a year. Reservoirs, in which filling and emptying phases do not take place on 

an annual basis, but over a number of years, are known as over-year reservoirs, in which 

over-year storage effects predominate. For the purpose of planning such over-year 

reservoirs, stochastically generated annual streamflows are to be considered and not 

periodic streamflows, since the periodic stochastic models will not be able to preserve the 

year to year historical correlations, when aggregated. Whenever severe, long-stretched 

deficits (shortages) in water supply are to be handled in a river system, carry-over 

storages become important and high storage capacities are provided for the reservoirs in 

such systems. Most reservoir systems exhibit combination of both, over-year and within­

year behaviours. 
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A non-dimensional parameter known as "standardized net inflow" (m) introduced by 

Hazen (1914) and used by Hurst (1951, 1965) is very useful in identifying if the over-

year effects are predominant for a given reservoir. This parameter is also called as 

resilience index. The same was further adopted in the analytic investigations of Gomide 

(1975), Troutman (1978) and Pegram et al. (1980) and in the Monte-Carlo investigations 

of the S-R-Y relationships of Perrens and Howell (1972), Bayazit (1982), Vogel and 

Stedinger (1987) and Vogel et al. (1995). The expression form is given by: 

m = (1 - D ) .!:!_ = 1 - D 
CT Cv 

(4.1) 

wherein Cv is the coefficient of variation of inflows, D is the target yield (expressed as % 

of Mean Annual Flow (MAF)), J..L is the mean and cr is the standard deviation of annual 

streamflows. Here, m is referred to as the standardized net inflow, since the mean net 

inflow, (J..L - J..L D) is standardized by the scale parameter cr of the inflows (Vogel and 

Stedinger, 1987). Vogel and Bolognese ( 1995) termed 'm' as the resilience index since it 

indicates the potential of the system to refill once emptied. For over-year storage systems, 

usually, m lies between 0 and 1, indicating low resilience (Vogel and Stedinger, 1987). 

Subsequently, Montaseri, Adeloye (1999) attempted to incorporate other characteristics 

in equation (1) for discriminating between within-year and over-year reservoir systems. 

A higher value of Cv requires higher capacity to meet a given target yield. For instance, 

for a river with Cv of annual streamflows in the order of 0.1 0, even a high target yield of 

about 90%-95% MAF, will not be critical and hence may not require large capacities to 
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be built. But for a river with Cv of annual streamflows in the order of 0.5 - 0.7, the same 

target yield would be highly critical and will require large storage capacities to be built, if 

long and/or severe deficits and their number of occurrences are to be minimized. 

However, the upper limit of the storage capacity of such reservoirs would very much 

depend on the incremental improvement in the desired performance and consequently the 

marginal increase in the benefit-cost ratio of the project. 

4.3 STORAGE-PERFORMANCE-YIELD (S-P-Y) RELATIONSHIPS 

The operational performance of a water supply reservoir is usually expressed in terms of 

performance indicators that describe the failure characteristics, namely the frequency, the 

duration and the severity of failures. That is, reliability, resilience and vulnerability 

together characterize "risk" in the reservoir planning and operation context. A clear 

understanding of how unpleasant the periods of unsatisfactory performance may be, will 

aid in better planning decisions (Hashimoto et al., 1982). Even though reliability is the 

most commonly used measure of performance in reservoir planning and operation, it is 

only indicative of the frequency of the deficit (shortfall) and not the continuity of deficits 

or the consequence. Resilience is nothing but the ability of a system to recover from 

failure and get back to normalcy within a specified interval of time. It is to be noted that 

the question of resilience does not arise as far as failure is not experienced. Further, even 

when the probability of failure is small, the possible consequences of the failure are to be 

taken care of. When the system is able to perform to a reasonable level of reliability, it 

will be wiser to reduce the severity of failure (vulnerability) rather than attempting to 

marginally increase the reliability. The definition of vulnerability proposed by Hashimoto 
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et al. ( 1982) states vulnerability as the average of the maximum deficits that occur in each 

run of failures within an operating horizon. If the loss function is convex in nature, this 

definition may mislead (Datta and Burges, 1984). Moy et al. (1986) in their work defined 

vulnerability as the magnitude of the largest deficit during the period of operation, and 

the same is used in this study also. Srinivasan et al. (1999) improved the resiliency 

indicator used by Moy et al. (1986). 

All over the globe, while more and more surface water supply sites are being pressed into 

service, target yields have been continuously increasing, at both the existing and the 

proposed sites. Quite often, increased demands are being met by efficient management 

and utilization of existing reservoir systems, rather than by adding on new systems (or 

facilities). Thus, whether new facilities are envisaged or the existing reservoir system is 

to be operated more efficiently, it is essential to construct the S-R-Y relationships for any 

reservoir system (Vogel , 1987), considering the uncertainty in the natural inflows into the 

reservoir. Often, this is done either by the no-failure capacity approach that uses a 

sequent peak algorithm coupled with a stochastic streamflow model (Vogel, 1985; Vogel 

and Stedinger, 1987), or by the behavior analysis method (Pretto et al. , 1997). The 

sequent peak algorithm does not allow failures . This method is used with large number of 

stochastically generated inflow sequences and the resulting storages are ranked and the 

reliability is estimated. On the other hand, for finding the reliability of a single purpose, 

single reservoir, sequent peak algorithm may be a convenient tool, but it is not possible to 

use the same for finding the recovery potential or the vulnerability of even a single 

purpose, single reservoir. This is because, by using this algorithm, only non-failure 

capacity estimates can be obtained, for each streamflow sequence routed through the 
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reservoir. Further, for use in multireservoir and/or multipurpose systems, this technique 

may not be suitable. All these flaws are overcome by using a behaviour analysis based on 

stochastic reservoir simulation model (Pretto et al., 1997), in which the streamflow 

sequences generated from an appropriate stochastic model are routed through the 

reservoir using an operating policy (such as a standard operating policy), and the 

complete information regarding failure characteristics is obtained. In this method, the 

generated sequences will be long enough to ensure steady state performance. Hence, for 

the descriptive assessment of storage performance on the storage-yield plane of the 

reservoir, it would be more appropriate to use the behaviour analysis method, so that 

more comprehensive information regarding the dynamic performance of a reservoir 

system can be obtained. 

The Storage-Performance-Yield (S-P-Y) relationships are useful in: (i) gaining an 

understanding of the variation of reservoir performance indicators namely, reliability, 

resilience, and vulnerability on the storage-yield plane; (ii) identifying the sensitive 

ranges of storage capacity of the over-year reservoirs, with regard to performance 

characteristics; and (iii) selecting between capacity expansion and demand management 

options, in case of deficit water supply systems. 

McMahon and Mein (1986), Klemes (1987), Vogel and Stedinger (1987), Phatarford 

(1989), Vogel and Bolognese (1995) and Vogel and McMahon (1996) provide reviews of 

literature relating to the development of general S-R-Y relationships. In the last few 

decades, quite a number of researchers have used stochastic streamflow models in 
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conjunction with sequent peak algorithm (either single-cycling or double-cycling) to 

obtain the S-R-Y relationships. Fiering (1963, 1965, 1967) generated 200 synthetic 

sequences of gamma and normally distributed annual streamflows from a first order 

autoregressive (AR(1)) model and analyzed the same by the double-cycling sequent peak 

algorithm. Burges and Linsley ( 1971) generated the complete probability density function 

of over-year storage capacity, using single-cycling sequent peak algorithm, assuming the 

annual streamflows to be normally distributed and to follow a AR( 1) model. They 

suggested that 1 000 streamflow sequences would be required to specify the probability 

distribution function of storage capacity. 

Perrens and Howell (1972) developed generalized S-R-Y relationships In graphical form 

when annual streamflows are assumed to be normally distributed and to follow a AR(l) 

model. They used an algorithm, which allows failures and computes the reliability based 

on the number of times failure did not occur. Gomide (1975) derived the probability 

distribution function of storage capacity and its mean and presented the results 

graphically for full regulation, and planning period ranging from 0 to 1 00 years, using the 

single-cycling sequent peak algorithm, for the case when annual streamflows follow a 

AR( I) model. He also presented the probability distribution function of storage capacity 

and its mean and standard deviation for different partial regulations of the reservoir for 

planning periods, which range from 0 to 50 years. Troutman (1978) derived the mean and 

the variance of the asymptotic distribution of storage capacity for the case of full 

regulation, when inflows are described_ by an AR(1) lognormal model. 
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Bayazit (1982) provided diagrams to determine the mean and standard deviation of the 

deficit for the cases of full and partial regulation. Vogel (1985) developed approximate 

but general S-R-Y relationships using both single and double-cycling sequent peak 

algorithm for normally distributed annual inflows and subsequently, Vogel and Stedinger 

(1987) developed the relationships for annual inflows characterized by a two-parameter 

lognormal distribution and first-order Markov process. They used Monte-Carlo 

simulation and double-cycling sequent peak algorithm. Klemes (1969) employed a s-state 

(s number of discrete states) Markov chain model in an effort to describe the complex 

structure of sequences of reservoir surpluses and failures. Vogel ( 1987) found that a two-

state Markov model gave a satisfactory representation of the complex structure of 

sequences of within-year surpluses and failures and later Vogel and Bolognese (1995) 

showed that a two-state Markov model can accurately represent over-year reservoir 

systems also. 

Buchberger and Maidment (1989) defined the index P, analogous to the Peclet number 

used to measure the relative importance of convection and diffusion processes, as 

P=pC 
20'2 

(4.2) 

for the purpose of determining when a storage reservoir of finite capacity behaves as one 

with a semi-infinite capacity. They show that finite reservoirs with P < -1 or P > 1 behave 

as if they have no top or bottom respectively. In this equation, p is mean annual inflow, 

C is the capacity of the reservoir and a 2 is the variance of annual inflow. Based on 

Markov diffusion process, they presented an analytic method for approximating the 

equlibirium probability distribution of storage in a finite reservoir. Their analysis was 
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subject to inflows and outflows which during a unit time interval produce potential 

storage displacements that are independent and identically distributed with a Gaussian 

distribution. Vogel and Bolognese ( 1995) show that 

p = (I - q { 1 - rq ] N - I 

1 1- q 
(4.3) 

where p = probability for failure-free operation over an N-year planning period; q = 

steady-state probability of a failure; and r = system resilience estimated. Equation (3), 

which is based on two-state Markov model of reservoir system states, provides a very 

good approximation to the relationship between p and q as long as the resilience index 

(equation 1), m, is greater than 0.2. Vogel et al. (1995) combined analytic storage model 

with the regional model of annual streamflows, resulting in general relations among 

storage, reliability, resilience and yield (S-R-Rs-Y) in the Northeastern United States. 

Vogel and McMahon (1996) derived approximate S-R-Rs-Y relationships for over-year 

water supply systems fed by autoregressive lag-one Gamma and normal inflows. They 

have shown that the resilience of an over-year water supply system is generally 

independent of its steady-state reliability. 

Pretto et. al. (1997) have shown that a sequence length of I 000 years or more is required 

in order to get a stationary value of storage estimate for a given reliability and demand. 

They have also mentioned that the S-R-Y relationships are only benchmarks for planning 

that allow comparison of alternative plans and systems. However, where planners are 

interested in operation over short planning horizons, the length of planning horizon of 
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interest will dictate the length of inflow sequence which should be used in conjunction 

with the appropriate initial reservoir volume. Srinivasan and Philipose (1998) have 

investigated the effect of single phase hedging on the performance of over-year reservoirs 

using behaviour analysis and have constructed trade-off relationships among the 

performance indicators, reliability, resilience, vulnerability and average deficit. Philipose 

and Srinivasan (1997) have constructed Storage-Performance-Yield (S-P-Y) relationships 

in the form of isolines for a within-year reservoir system in southern India. 

Weeraratne et al. (1986) employed reliability, resilience and vulnerability measures to 

evaluate reservoir release policies for low flow augmentation. Moy et al. (1986) 

investigated the trade-off between reliability, resilience and vulnerability for a water 

supply reservoir using multiobjective programming model. Bum et al. (1991) formulated 

a multiobjective compromise-programming model for real-time reservoir operation 

representing reliability, resilience and vulnerability as performance criteria. Simonovic 

(1992) formulated a simulation-optimization model with reliability and vulnerability 

constraints for finding the minimum required capacity. The formulation of Moy et al. 

( 1986) was improved for more complete representation of resilience by Srinivasan et al. 

(1999). Introducing constraints, which describe reservoir performance explicitly into the 

optimization, would have to deal with a large number of integer variables (depending on 

the number of time periods considered). For such problems, the formulation is of mixed 

integer type, and this would require enormous computer time. Building resilience into the 

model requires tracking of the number of crossovers from failure to success, and this 

makes the formulation much more complex (Srinivasan et al. , 1999). Though many 
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attempts have been done to generalize the S-R-Y relationships of over-year systems, 

except the works of Vogel and Bolognese (1995), Vogel and McMahon (1996), there has 

not been significant attempts to generalize Storage-Performance-Yield (S-P-Y) 

relationships of over-year systems, which consider also resilience and the vulnerability. 

4.4 PROPOSED STUDY 

In this chapter, it is proposed to investigate the S-P-Y relationships of both over-year and 

within-year reservoir systems. While the first part of the study deals with the construction 

of general S-P-Y relationships and a S-P-Y database for use in over-year water supply 

reservoir planning and design applications, the second part involves the construction of 

S-P-Y relationships for a specific within-year reservoir, namely, Dharoi reservoir on 

Sabramathi river system in India. 

The over-year system generalization considers the commonly used performance 

indicators, namely, reliability, resilience and vulnerability. Modularized annual 

streamflows generated from AR(1) model are used for the evaluation of the performance 

indicators. In most cases, for modeling annual streamflows, the assumption of AR(l) 

model with lognormal distribution would be sufficient. Either models with higher order 

dependence or more complex 3-parameter lognormal or gamma distributions may not be 

necessary to describe annual streamflows. The approach followed in this study is 

"behaviour analysis based on stochastic simulation", which allows failures and explicitly 

tracks the failure characteristics during the period of the long-run reservoir simulation. 

That is, the system reliability is expressed as a steady state probability. The S-P-Y 
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database constructed would serve as useful screening level reference information for 

reservoir planners and decision-makers dealing with over-year water supply reservoirs. 

The within-year reservoir performance study is carried out for the Dharoi reservoir on the 

river Sabramathi in India, considering the performance indicators, namely, volume 

reliability, occurrence reliability, resilience, period vulnerability, event vulnerability, 

mean period deficit and mean event deficit. These seven indicators are defined in a later 

section of this chapter. The reservoir storage performance indicators are evaluated using a 

long synthetic sequence generated, which is similar to the historical flows recorded at the 

site of interest. The three alternative periodic stochastic models (described in Chapter 3), 

namely, k-NN, HMBB and PMABB have been considered for the purpose of generating 

the long sequence of monthly streamflows. A series of S-P-Y plots are proposed to be 

developed for the Dharoi reservoir using all the three stochastic models and a comparison 

would be presented. Also, a brief discussion of the usefulness of these plots would be 

provided. 

4.5 S-P-Y RELATIONSIDPS FOR OVER-YEAR RESERVOIR SYSTEMS 

4.5.1 MONTE-CARLO SIMULATION EXPERIMENTS 

In this study, detailed information regarding reservoir performance on the storage-yield 

plane is obtained based on exhaustive number of Monte-Carlo simulation experiments, 

assuming the modular annual streamflows to be lognormally distributed (LN-2) and 

having a AR(l) dependence structure. For the Monte-Carlo simulation experiments, 13 

cases of coefficient of variation (Cv = 0.1, 0.15, 0.2, 0.25, ... , 0.7) and 11 cases of lag-one 
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auto-correlation coefficient (PI = 0.0, 0.05, 0.1, 0.15, 0.2, ... ,0.5) of flows are considered. 

Tills selection of inflow parameters is based on the real world ranges of these parameters 

of rivers, at a global level. A study of annual streamflow data from 140 gauging stations 

around the world (Yevjevich, 1964), with records of at least 37 years indicates that PI 

values for most of the rivers are found to be less than 0.40. Similarly, from a study of 106 

basins in New England, Vicens et al. (1975) found the mean and the standard deviation of 

estimates of P1 to be 0.22 and 0.14 respectively. Hence, a reasonable range of Pl for 

these Monte-Carlo experiments has been taken as 0.0 to 0.50, which includes most cases 

of practical interest. Values of m (standardized net inflow) range from 0.1 to 1.0, which 

include most over-year storage problems of interest, which correspond to demand levels 

in the range of 99-30% for values of Cv from 0.10 to 0.70. The storage-yield plane is 

characterized by the combinations of storage capacities in the range 0.3-5.0 MAF (at an 

interval of 0.1 MAF) and a number of cases of target yield (covering the over-year range 

of m = 0.1, 0.2, ... ,1.0). Thus, in all, the total number of combinations of independent 

variables amounts to 80784 (Table 1 ). The stepwise procedure followed for obtaining the 

S-P-Y information is given in the following section. 
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Table 4.1. Combinations of Parameters Used for Monte-Carlo Simulation 
Coefficient Correlation Yield Storage Number of 
of Variation Coefficient (D) Capacity (K) Combinations 

(Cv) (PI) (MAF) (MAF) 
(1) (2) (3) (4) (5) 

0.10 0.0-0.50 0.90- 1.00 0.30-5.00 5808 
(0.05) (0.010) (0.01) 

0.15 0.0-0.50 0.85- 1.00 0.30-5.00 5808 
(0.052 (0.015) (0.012 

0.20 0.0-0.50 0.80- 1.00 0.30- 5.00 5808 
(0.05) (0.020) (0.012 

0.25 0.0-0.50 0.75- 1.00 0.30-5.00 5808 
(0.05) (0.0252 (0.01) 

0.30 0.0-0.50 0.70- 1.00 0.30- 5.00 5808 
(0.05) (0.030) (0.01) 

0.35 0.0-0.50 0.65- 1.00 0.30- 5.00 5808 
(0.052 (0.0352 (0.01) 

0.40 0.0-0.50 0.60- 1.00 0.30- 5.00 5808 
(0.05) (0.040) (0.01) 

0.45 0.0-0.50 0.55- 1.00 0.30- 5.00 5808 
(0.05) (0.045) (0.012 

0.50 0.0-0.50 0.50- 1.00 0.30-5.00 5808 
(0.05) (0.050) (0.01) 

0.55 0.0-0.50 0.45- 1.00 0.30- 5.00 6336 
(0.05) (0.050) (0.01) 

0.60 0.0-0.50 0.40- 1.00 0.30- 5.00 6864 
(0.05) (0.050) (0.01} 

0.65 0.0-0.50 0.35- 1.00 0.30- 5.00 7392 
(0.05) (0.050) (0.012 

0.70 0.0-0.50 0.30- 1.00 0.30-5.00 7920 
(0.052 (0.050} (0.01) 

Total number of combinations 80784 
Note: Values within parentheses indicate the interval in the respective range of the 
parameter. 

4.5.1.1 Stepwise Procedure for Obtaining the S-P-Y Information 

Following are the sequential steps carried out in this study to obtain the storage 

performance-yield (S-P-Y) information for over-year reservoir systems: 

1. For a particular combination of coefficient of variation (Cv) and lag-one 

autocorrelation coefficient (PI) of annual streamflows, lognormally distributed 
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modular annual streamflows with AR(1) dependence structure of length = (N* 1 000) 

are generated. 

2. The modular annual streamflows generated are divided into 1000 sequences, each N 

year in length, in sequential order. It is to be noted that the length N is taken such that 

the average performance indicators computed over 1000 sequences are not affected 

by the initial storage condition at the beginning of the simulation, and the average 

performance indicators reach a steady state. 

3. The generated modular annual streamflows are routed through the reservoir using 

standard operating policy for different combinations of active storage capacity (K) 

and target yield (D) considered. The combinations of K and D describe the reservoir 

storage-yield plane of interest. 

4. The mean reliability, the mean resilience and the mean vulnerability along with their 

respective standard deviations (over 1 000 sequences), are computed for all 

combinations of active storage capacity and target yield considered. Now the S-P-Y 

information is available for the particular combination of Cv and PI considered. 

5. The steps 1 to 4 are repeated to obtain the performance information for all the 

combinations of Cv and p 1 considered. 

This entire S-P-Y information obtained is stored in a database, which will be useful in 

construction of performance relationships and performance analysis on the storage yield­

plane. For the long-run Monte-Carlo simulation referred, a simulation length (N) of 1000 

years was found to be sufficient for the mean performance indicators, namely, reliability 

and resilience to reach a steady state, while a simulation length of approximately 10000 
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years was required to obtain the mean vulnerability over 1000 sequences. Hence, 

N=IOOOO years is adopted for the long-run stochastic reservoir simulation in this paper. 

4.5.1.2 Generation of Modular Annual Streamjlows 

The annual streamflows are often lognormally distributed and have a single order of 

dependence. This means that a AR(l) model would be sufficient to model the annual 

streamflows. If the annual streamflows measured are given by Qi, then the modular 

annual streamflows will be given as Y i = Qi I Q, where Q is the mean annual flow 

(MAF). This modular form of the annual streamflows is used in the Monte-Carlo 

simulation for performance study. Once Cv and PI of Yi are assumed, the corresponding 

modular flows can be generated. The log-transformed modular annual streamflows (Xi ) 

following a AR(l) model may be written as: 

X,+1 = f-lx + P1 (x)(X, - f-lx) +a-x (~1- p 1
2
(x) }, (4.4) 

in which Ei are independent normal disturbances with mean zero and variance unity, and 

J.Lx, cr2x and PI (x) are the mean, the variance and the lag-one correlation of the log­

transformed modular streamflows CXi)· The relationships between the statistics of the 

historical data (f-lY, a-Y, p1(y)), and the statistics of the transformed sequence (J.Lx,crx, 

PI (x)), as given by Matalas (I967) have been used in this study to estimate J.Lx, crx, Pt (x). 

Once these transformed parameters are obtained, they can be substituted into equation 

121 



I 

' 

( 4.4) to obtain the generated values (Xj). Then, these generated values (Xi) are 

exponentiated to get the generated modular streamflows (Y i). 

4.5.2 RESULTS AND DISCUSSION 

4.5.2.1 Storage-Performance-Yield (S-P-Y) Relationships 

It is to be noted that the Storage-Performance-Yield (S-P-Y) relationships are obtained 

from the results of the Monte-Carlo simulation, assuming the Standard Operating Policy 

(SOP). In this section, two of the typical sets of S-P-Y relationships are presented in 

Figures 4.1 - 4.6. The Figures 4.1 - 4.3 correspond to the S-P-Y relationships for p1 = 

0.30 and Cv = 0.50; and the Figures 4.4- 4.6 correspond to the same for PI= 0.30 and Cv 

= 0.70. For the purpose of constructing the storage-yield plane shown in Figures 4.1 - 4.6, 

a wide range of storage capacities (0.3-5.0 MAF) and target yields are considered. 

4.5.2.2 Storage-Reliability-Yield (S-R-Y) Relationships 

S-R-Y relationships are the most commonly discussed performance relationships in 

reservoir problems. These relationships provide the primary information regarding the 

reservoir performance. It is seen from Figures 4.1 and 4.4 that reliability drops 

significantly with increase in yield for a given storage capacity, Cv and PI of the inflows. 

This drop is found to be more for flows with higher Cv (Figures 4.1 and 4.4), which is 

only expected. The change in the slope of the S-R-Y relationship provides valuable 

infonnation for reservoir planners and designers, in terms of identifying the sensitive 

ranges of storage capacity. It may be seen from Figures 4.1 and 4.4 that as the target yield 

increases, the storage capacity at which the S-R-Y curve becomes horizontal, also 
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increases. However, for higher target yields (>=0.90 MAF), the S-R-Y curve does not 

become horizontal even at a storage capacity of 5.0 MAF. 

For water supply reservoirs, the desirable range of reliability is 0.95-0.99 (Vogel and 

McMahon, 1996). The ranges of minimum capacity required to achieve this range of 

reliability are extracted from the S-P-Y database and are presented in Tables 4.2- 4.7 for 

various yields and six different combinations of p1 and Cv of the inflows. The ranges of 

the other two performance indicators corresponding to the ranges of the storage capacities 

referred above are also given in Tables 4.2- 4.7. It may be noted from Tables 4.2 - 4.7 

that in case of low target yields, if the reliability obtained corresponding to the minimum 

storage considered (0.3 MAF) itself would be greater than 0.95, then the actual value of 

reliability is entered. Likewise, in the case of high target yields, if the reliability obtained 

for the upper limit of the storage capacity considered (5.0 MAF) is less than 0.99, then 

the actual value of reliability is reported. The performance information presented in 

Tables 4.2 - 4.7 will be quite useful at the planning level for water resources decision 

making. 

Table 4.2. Ca~acit:y reguirement and ~erformances in good reliabilit:y range for e1 = 0.3 and C~ = 0.3 
YieldD Reliability Min Capacity Resilience Vulnerability Ave. Deficit 
(MAF) K (MAF) (MAF} 

1.00 0.9500 >5.0 
0.9900 >5.0 

0.97 0.9490 3.0 0.3617 0.6050 0.1890 
0.9792 5.0 0.3581 0.5717 0.1897 

0.94 0.9524 1.9 0.3937 0.5734 0.1764 
0.9894 3.7 0.3956 0.5099 0.1764 

0.91 0.9522 1.3 0.4229 0.5470 0.1627 
0.9901 2.5 0.4246 0.4811 0.1626 

0.88 0.9489 0.9 0.4561 0.5251 0.1498 
0.9905 1.8 0.4632 0.4591 0.1503 

0.85 0.9539 0.7 0.4915 0.4945 0.1385 
0.9897 1.3 0.4994 0.4382 0.1380 

0.82 0.9506 0.5 0.5269 0.4695 0.1268 
0.9.902 1.0 0.5339 0.4144 0.1279 

0.79 0.9561 0.4 0.5667 0.4398 0.1158 
0.9912 0.8 0.5673 0.3886 0.1164 
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Table 4.4. Capacity requirement and performances in a good reliability range for p1 = 0.3 and Cv = 

0.7 

YieldD Reliability Min Capacity Resilience Vulnerability Ave. Deficit 
{MAF} K ~MAF} (MAF} 

1.00 0.9500 >5.0 
0.9900 >5.0 

0.95 0.9500 >5.0 
0.9900 >5.0 

0.90 0.9500 >5.0 
0.9900 >5.0 

0.85 0.9509 3.8 0.3454 0.7443 0.2950 
0.9724 5.0 0.3432 0.7300 0.2946 

0.80 0.9515 2.7 0.3728 0.6942 0.2679 
0.9898 5.0 0.3738 0.6500 0.2667 

0.75 0.9493 1.9 0.3994 0.6480 0.2418 
0.9901 3.6 0.4025 0.6015 0.2406 

0.70 0.9508 1.4 0.4310 0.6003 0.2166 
0.9900 2.6 0.4402 0.5566 0.2159 

0.65 0.9496 1.0 0.4627 0.5528 0.1923 
0.9899 1.9 0.4734 0.5107 0.1918 

0.60 0.9476 0.7 0.4989 0.5060 0.1687 
0.9900 1.4 0.5062 0.4642 0.1694 

0.55 0.9439 0.5 0.5412 0.4576 0.1459 
0.9894 1.0 0.5463 0.4255 0.1478 

0.50 0.9607 0.4 0.5870 0.4051 0.1263 
0.9885 0.7 0.5882 0.3814 0.1258 

0.45 0.9677 0.3 0.6301 0.3553 0.1057 
0.9890 0.5 0.6257 0.3341 0.1042 

0.40 0.9860 0.3 0.6795 0.2934 0.0884 
0.35 0.99000 <0.3 
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yield, this transition range widens and moves towards higher storage capacities and 

eventually ending up in flat storage-resilience relationships for high target yields. This 

deserves some attention in the planning of water supply systems, wherein the marginal 

benefits due to increase in resilience are considerable. 

4.5.2.4 Storage-Vulnerability-Yield (S-V-1? Relationships 

It is seen from Figures 4.3 and 4.6 that in general, vulnerability increases with Cv. 

Furthermore, it is observed that at high target yields, vulnerability is very high and this 

decreases at a mild rate with increase in storage capacity. On the other hand, at lower 

target yields, appreciable reduction in vulnerability is noted in a certain range of storage 

capacity and this range widens and moves towards higher storage capacities with increase 

in target yield and/or Cv. This can be exploited in certain water supply systems, wherein 

the marginal value of damage reduction due to decrease in vulnerability is quite high. 

4.5.2.5 S-P-Y Database and the Query-based Program 

The results of the Monte-Carlo simulations are stored in a database created using MS 

Access. This database contains information regarding the inflow characteristics (p1, Cv), 

reservoir storage capacity and target yield (expressed in terms of the historical mean 

annual flow (MAF)) and the corresponding performances including their standard 

deviations over the I 000 replicates. There are 80,784 records in this database, occupying 

about 28MB of space jn computer hard disk. To extract information from this database, a 

front-end query-based program was developed using Visual Basic. Either single values or 

ranges of values can be pre-specified for the input parameters, autocorrelation, coefficient 
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of variation of river flow, storage capacity of the reservoir and demand level in the input 

form (Fig 4.7). The corresponding mean performance indicators (reliability, resilience, 

vulnerability and average deficit) and their standard deviations over 1000 replicates can 

be extracted from the S-P-Y database and displayed on the output form (Fig 4.8). This 

program also allows the user to specify the desirable performance range, so that the 

output form will not display the results falling beyond this specified range of 

performance indicators. This helps in avoiding unwanted results and enables in directing 

the search properly. Furthermore, there is option for sorting the outputs based on the 

mean performance indicators and their standard deviations. Sorting can be performed at 

two levels. For example, the first level of sorting may be based on reliability and the 

second level of sorting may be based on any one of the other indicators (see Fig 4.7). The 

number of records displayed on the output form will guide deciding further refinement. 

The outputs can be saved in text files (ASCII format) for further processing or for future 

reference. It is to be noted that in this study, the performance investigation has been done 

using the simple Standard Operating Policy (SOP) (Eq. 4.5). 

-{s, +Q, -c 
R,- D, 

S,+Q, 

if ( S, + Q, - D,) > C 

if C ~ ( S, + Q, - D,) ~ 0 

otherwise 

(4.5) 

where S1 is the initial storage, Qt is the inflow, Dt is the target demand, R1 is the actual 

release and C is the active storage capacity of the reservoir. However, such S-P-Y 

databases can be constructed for other (hedging/optimal) policies also. 
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Fig. 4.7 Typical Input Form for S-P-Y Data Base 

Fig. 4.8 Typical Output Form for S-P-Y Data Base 
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4.5.2.6 Usefulness of the Performance Database in Decision-making 

The over-year reservoir performance database constructed in this study will be useful in: 

(i) Planning and design of reservoir storage capacity for a pre-specified target yield and 

desirable performance indicators and (ii) Making decisions regarding capacity expansion 

or implementation of demand management programs or a combination of the two for an 

existing reservoir system under operation. However, it is to be mentioned that this 

database can yield only approximate planning level information concerning the functional 

performance of an over-year water supply reservoir with regard to meeting a target yield. 

This is to be used in conjunction with other kinds of inputs such as economical, 

environmental, social, political and legal in order to arrive at a final decision. The two 

points mentioned concerning the usefulness of this database are illustrated below. 

Consider that the storage capacity of an over-year water supply reservoir is to be fixed for 

a target yield of60% MAF and the streamflows into the reservoir have a Cv of0.7 and PI 

of 0.3. A reasonable degree of performance in terms of long-run values of reliability, 

resilience and vulnerability is expected. Now, the decision-maker can invoke the S-P-Y 

database constructed in this study and can obtain the kind of storage-performance 

information presented below: 

ForK= 1.0 MAF\Reliability = 0.974; Resilience = 0.503; Vulnerability = 0.492 MAF 

ForK = 1.5 MAF; Reliability= 0.992; Resilience= 0.508; Vulnerability = 0.456 MAF 

ForK= 2.0 MAF; Reliability= 0.998; Resilience= 0.523; Vulnerability = 0.406 MAF 

ForK = 2.5 MAF; Reliability= 0.999; Resilience = 0.568; Vulnerability = 0.319 MAF 

ForK = 3.0 MAF; Reliability = 0.9997; Resilience= 0.626; Vulnerability = 0.204 MAF 
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A scan of the above information that would be displayed on the output form, suggests 

that it may be sensible to go in for a storage capacity (K) in the range of 1.5-2.0 MAF. 

Further investigation of the performance indicator resilience, within the selected range of 

K shows that K = 1.9 MAF would be an ideal choice of the reservoir capacity. 

ForK= 1.9 MAF; Reliability= 0.997; Re~ilience = 0.519; Vulnerability= 0.417 MAF. 

Consider that some years after the construction of an over-year water supply reservoir 

with a storage capacity of 1.0 MAF on a river with inflow characteristics of Cv = 0.5 and 

PI= 0.5, the demand becomes 0.8 MAF, outgrowing the initial target yield of0.70 MAF. 

As a result, the long-run reliability is expected to fall from 0.956 to 0.878 (7.8% 

decrease); the long-run resilience is expected to fall from 0.393 to 0.329 (6.4% decrease); 

the long-run vulnerability is expected to increase from 0.532 MAF to 0.644 MAF (0.112 

MAF increase). In this situation, if the originally intended performance is to be retrieved, 

then, it may be necessary to decide among capacity expansion or demand management or 

both. Let the maximum capacity to which the reservoir can be built at the site be 

restricted to 1.5 MAF from economic, environmental and other considerations. If the 

existing capacity of 1.0 MAF is increased to 1.5 MAF, then, the long-run mean 

performance indicators will be 0.922, 0.329 and 0.636 MAF respectively. On the other 

hand, if the demand management option is exercised (0.05 MAF reduction from the 

expected demand of 0.80 MAF), then the performance indicators are expected to be 

0.922, 0.359 and 0.589 MAF respectively. If both the capacity expansion (from 1.0 MAF 

to 1.5 MAF) and demand management (0.8 MAF to 0.75 MAF) measures are 
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implemented, then the performance indicators will be 0.957, 0.360 and 0.574 

respectively. Thus, it can be seen that by combining the two measures, reliability is 

retrieved to the original value, while the other two indicators suffer marginally. 

4.6 STORAGE-PERFORMANCE-YIELD RELATIONSHIPS FOR 

WITHIN-YEAR RESERVOIR SYSTEMS 

The development of the storage-performance-yield relationships for within-year reservoir 

systems cannot be easily generalized since there will be too many parameters involved. 

Hence, the relationships are to be developed for a particular reservoir under 

consideration. In this study, to illustrate the construction and the usefulness of such 

relationships, the case example chosen is the Dharoi reservoir on the river Sabramathi in 

India. 

4.6.1 Performance Indicators for Within-year Reservoir Systems 

The definitions of the seven reservoir storage performance indicators for use in within-

year reservoir systems are as stated below (equations 4.6 - 4.13): 

Occurrence based reliability 
M 

R =1 -
Idj 
~ 

occ T 

dj =duration of the jth failure event 
M = total number of failure events 
T = total number of periods of operations 

Volume based reliability 
T 

LRt 
R =l=L_ 

vol T Iq 
lz1 

D1 = demand at period t 

(4.6) 

(4.7) 
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... 

Rt = release at period t 
T = total number of periods of operations 

Resilience 
M 

Res=-M-

Ldi 
j =1 

dj = duration of the lh failure event 
M = total number of failure events 

Period vulnerability 

Vp=max(D1 -R1 ) t=1,2, ... ,T 
t 

D1 = demand at period t 
R1 = release at period t 

Event vulnerability 

VE =max[ E11E2, ...... .Ei" . .EM J 
dj 

Ei = L(q- Ri) j=1 ,2, ... ,M 
i=1 

Di = demand at period i 
Ri =release at period i 
Ej = total deficit in j 1

h failure event 
dj = duration of the lh failure event 

Mean period deficit 

T 

LD1 -R 1 

MDperiod = ts1 N t = 1,2, ..... ,t 

D1 = demand at period t 
Rt =release at period t 
N = total number of failure periods 
T = total number of periods of operations 

Mean event deficit 
T 

'LD1 - R 1 
MD .!.:1=:..:..1 _ _ _ 

event- M 

(4.8) 

(4.9) 

( 4.1 0) 

(4.11) 

(4.12) 

(4.13) 
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Dt = demand at period t 
Rt = release at period t 
M = total number of failure events 
T = total number of periods of operations 

4.6.2 Case Example: The Dharoi Reservoir on the Sabarmathi River 

The Sabarmathi rises in the Aravalli hills and has a length of 300km2
. The drainage area 

ofthe river is 21674km2 of which 19% lies in Rajasthan and the balance in Gujarat (Fig. 

4.9). Its main tributaries are the Sei from the right and The Wakul, the Hamav, the 

Hathmati and the Watrak on the left. At Dharoi the river passes through a gorge and later 

after 240km of its course, it passes through Ahmedabad and finally falls into the Gulf of 

Cambay. The important tributaries are the Hathmati (1523km2
), the Sei (946km2

), the 

Wakul (1625km2
), and the Hamav 972km2

) (Source: NIH, 1987). 
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Fill. 4.9: River Sabarmathi- Dharoi Dam Site (Source: NIH. 1989). 
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The historical monthly flow data at Dharoi dam site are presented in Table 4.8 for 41 
water years (June 1935- May 1975). 

Table 4.8: Historical Monthly Streamflow Data- River: Sabramathi; Station: Dharoi dam 
site (Source: NIH, 1987). 
Year Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May 

_. 1935 24.17 194.79 36.29 204.52 31.64 9.65 4.64 3.34 1.81 0.58 0.29 0.22 
1936 35.93 11.25 28.01 24.46 9.00 2.32 0.36 0.00 0.00 0.00 0.00 0.00 
1937 7.48 445.33 72.36 121.27 27.29 9.43 6.46 5.66 4.50 3.41 2.47 2.18 
1938 130.93 93.19 58.64 14.95 4.28 2.18 2.90 0.00 3.92 3.77 3.56 3.41 
1939 1.09 23.30 55.16 82.74 4.14 3.41 3.27 3.41 3.12 3.41 2.03 1.52 
1940 93.41 42.24 44.05 9.80 4.72 1.38 0.00 0.00 0.00 0.00 0.00 0.00 
1941 4921 513.62 869.53 51.46 10.96 5.15 3.77 3.85 2.47 1.09 0.44 1.38 
1942 2.69 836.66 398.08 498.74 23.44 12.12 2.32 1.14 0.58 0.22 0.15 3.27 
1943 51.84 1339.75 493.52 199.73 28.96 3.99 2.32 1.89 1.02 0.44 0.22 5.37 
1944 71.85 715.45 305.47 1017.30 31.93 13.14 122.51 7.48 5.15 2.32 1.23 0.58 
1945 24.17 1063.46 618.64 129.48 23.22 8.56 5.15 2.32 1.31 0.58 0.29 0.22 
1946 2.40 62.71 464.92 180.79 16.18 6.60 1.52 1.31 0.87 0.44 0.36 0.80 
1947 0.65 26.85 315.42 245.96 8.93 2.47 3.41 3.77 3.05 1.09 0.44 0.22 
1948 0.36 29.32 19.16 11.90 5.37 2.32 0.80 0.22 0.22 0.22 0.15 0.15 
1949 1.74 58.93 66.04 19.89 5.01 0.65 0.36 0.36 0.29 0.22 0.15 0.44 
1950 0.29 383.20 155.39 1197.72 121.42 35.13 18.36 13.43 7.33 3.19 1.45 0.51 
1951 5.81 148.93 139.49 15.89 2.90 1.67 1.74 0.73 0.58 0.29 0.22 0.22 
1952 0.36 27.00 128.24 41.80 15.17 5.59 4.14 4.79 1.96 0.87 0.44 0.22 
1953 5.59 15.82 9.65 58.19 22.43 7.33 5.01 3.85 2.47 4.14 1.89 1.02 
1954 55.74 404.47 135.79 654.71 150.38 20.90 14.01 11.10 8.42 5.95 4.28 3.12 
1955 21.19 10.96 331.31 889.49 78.38 31.86 18.00 10.16 5.95 2.40 0.00 0.00 
1956 27.80 525.89 588.66 383.06 379.79 34.11 16.33 15.15 12.34 9.00 5.88 4.64 
1957 66.62 163.37 109.01 26.85 4.94 2.18 1.45 0.65 0.58 0.36 0.29 0.15 

. 1958 1.96 235.51 23.30 67.42 31.14 9.80 4.64 1.67 1.09 0.73 0.44 0.29 
1959 0.29 56.68 187.46 895.22 99.65 50.22 21.99 13.14 11.61 9.80 6.24 4.51 
1960 0.00 124.47 239.36 57.26 20.47 9.07 8.85 3.70 2.54 1.45 0.80 0.36 
1961 4.94 116.70 71.78 870.48 79.40 45.07 25.18 14.73 27.36 5.59 2.98 1.31 
1962 0.51 214.32 187.90 126.86 32.66 10.09 5.59 3.12 3.63 1.31 0.80 0.58 
1963 10.52 69.53 231.15 300.32 42.53 15.31 10.16 5.88 4.28 2.69 1.52 1.23 
1964 9.73 124.83 391.91 97.76 29.47 12.85 8.78 8.13 5.01 2.25 1.52 0.94 
1965 0.73 124.83 86.44 25.11 189.71 2.25 1.81 1.23 0.94 0.80 0.65 0.36 
1966 47.97 I 10.17 24.60 51.17 2.83 0.80 0.58 0.58 0.58 0.51 li.68 I 45 
1967 13.50 354.68 182.75 253.80 47.46 14.95 17.93 7.1 I 4.43 2.25 1.23 0.87 
1968 0.58 251.91 99.21 23.95 9.80 3.05 2.10 1.38 1.16 0.94 0.58 029 
1969 4.72 82.23 64.30 36.43 2.40 0.65 0.36 0.29 3.85 0.36 0.15 0.80 
1970 46.09 13.50 352.14 440.46 82.16 31.86 18.43 4.57 2.69 1.16 0.58 0.29 
1971 3.56 209.53 99.94 130.20 10.52 3.05 2.18 1.23 1.02 0.51 0.29 0.00 
1972 20.25 92.24 60.82 14.37 1.02 0.65 0.58 0.51 0.51 0.36 0.44 0.15 
1973 2.47 144.21 970.85 2009.48 205.61 54.00 23.51 13.35 8.78 4.64 2.54 6.15 
1974 143.77 44.34 140.29 21.05 18.80 2.54 1.02 23.08 14.73 15.02 11.39 7.26 
1975 11.32 258.88 398.37 504.84 133.25 22.72 9.00 5.88 5.52 1.60 0.80 1.23 

The summary statistics namely mean, standard deviation and skewness, of the monthly 
flows are presented in Table 4.9. 
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Table 4.9: Summary Statistics of Historical Monthly Streamflows - River: Sabramathi; 
Station: Dharoi dam site. 
Month Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May 
Mean 24.64 238.17 225.74 292.87 49.98 12.47 9.79 5.01 4 .09 2.34 1.61 1.42 
(Mm3

) 

Standard 
Deviation 35.13 295.36 228.16 419.78 73.89 14.32 19.45 5.38 5.12 3.06 2.33 1.87 
(Mm3

) 

Skewness 1.90 2.1 I 1.59 2.23 2.70 1.53 4.92 1.43 2.70 2.39 2.45 1.77 

It may be noted that nearly 87% of the flows are received during the period July to 

September (3 months). The coefficient of variation of the flows are above 1.0, for all the 

months. The skewness coefficient of the flows is also high in all the months, the highest 

being in December (about 5). The model parameters for the three periodic stochastic 

models considered in this study, are tabulated in Table 4.1 0. While k-NN and PMABB 

are non-parametric stochastic models, HMBB is a hybrid stochastic model and hence has 

both parametric and non-parametric components. The periodic AR(1) (PAR(1)) 

parametric component does the partial pre-whitening that helps in capturing the major 

part of the linear short-term dependence; and the resampling of the resulting residuals 

using a moving block of size L = 24 months, helps in capturing the higher-lag linear 

dependence and a significant part of the non-linearity if present. Moreover, the moving 

I · block resampling of the residuals enables reproduction of the features of the marginal 

distribution, namely, asymmetry and multi-modality. For the k-NN model, the default 

choice of dependence order d =1 and the number of nearest neighbors k = n°·5 (proposed 

by Lall and Sharma, 1996) are adopted, where n is the choice of the sample record. For 

the PMABB model, a block size of L = 4 months was found to be sufficient, since the 

flow data are resampled using the matched block bootstrap proposed by Carlstein et al. 

(1998) which is a method suited for modeling dependent data. The number of elements 

considered for the matching exercise is 5 and p is the smoothing parameter that aims to 
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achieve variability in the synthetic simulations. The parameters of the three stochastic 

models are listed in Table 4.1 0. 

Table 4.10: Parameters of the Stochastic Models 
Models Parameters 
k-NN a) Dependence Order, d = 1; 

b) No. of neighbours considered for residual 

HMBB 
(a) PAR(1) parameters 

from June- May 

PMABB 

resampling, k = 6. 
Jun Jul 

a) 0.4612 0.1023 
Oct 

0.5218 
Feb 

0.8336 

Nov 
0.6578 
Mar 

0.7450 

Aug 
0.4533 

Dec 
0.3611 

Apr 
0.8806 

Sep 
0.4620 

Jan 
0.3251 
May 

0.7050 

b) Block size for resampling the residuals, 
L = 24 months 

a) Length of within-year matched block, 
L =4 months; 

b) No. of data points used for rank matching, 
w=S; 

c) Smoothing parameter, p = 0.90-1.10. 

The performance of the three stochastic models in terms of reproducing the summary 

statistics of the periodic historical flows is presented in Table 4.11. It is seen from the 

Table 4.11 that: 

The k-NN model displays some bias in reproducing the monthly means and the monthly 

standard deviations of flows, while the other two models perform slightly better. 

All the three models are found to reproduce the skewness present in the historical flows 

in all the 12 months. 
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Table 4.11: Reproduction of Summary Statistics of Historical Streamflows - River: 
Sabramathi; Station: Dharoi dam site. 

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May 
Mean (Mm3

) 

Historical 24.64 238.17 225.74 292.87 49.98 12.47 9.79 5.01 4.09 2.34 1.61 1.42 
k-NN• 23.19 259.09 233.52 296.60 47.43 12.61 10.22 4.78 3.82 2.11 1.34 1.48 
HMBB* 25.98 241.05 223.20 286.41 47.40 12.13 9.35 4.88 3.97 2.29 1.60 1.41 
PMABB* 25.18 244.11 231.81 297.49 51.33 12.96 10.31 5.23 4.29 2.44 1.66 1.51 

Standard 
Deviation (Mm) 
Historical 35.13 295.36 228.16 419.78 73.89 14.32 19.45 5.38 5.12 3.06 2.33 1.87 
k-NN* 32.69 305.66 230.61 392.83 68.34 14.09 20.41 5.03 4.79 2.67 1.82 1.75 
HMBB* 33.02 294.71 224.25 410.41 70.47 14.08 18.16 5.23 4.99 2.95 2.27 1.82 
PMABB* 35.26 302.90 219.36 405.84 73.39 14.27 19.87 5.44 5.28 3.09 2.33 1.89 

Skewness 
Historical 1.90 2.11 1.59 2.23 2.70 1.53 4.92 1.43 2.70 2.39 2.45 1.77 
k-NN* 1.88 1.96 1.56 2.03 2.95 1.50 4.70 1.49 3.01 2.48 2.49 1.61 
HMBB* 1.65 2.06 1.63 2.24 2.79 1.58 5. 13 1.42 2.76 2.39 2.38 1.75 
PMABB* 1.84 2.08 1.51 2.12 2.72 1.44 4.70 1.39 2.64 2.29 2.40 1.66 

The gross storage capacity of the Dharoi reservoir is 908 Mm3
, and the live storage 

capacity is 732 Mm3 and the Full reservoir Level (FRL) of the dam is I 89.59 m, as given 

in the weekly report of 81 important reservoirs of India (CWC, Government of India, 

2007). The monthly yield factors as reported in the technical report UM -16 of NIH 

(NIH,1987) and the same are presented in Table 4.12. These values have been used in 

this study for the purpose of development of the Storage-Performance-Yield (S-P-Y) 

relationships. 

Table 4.12: Monthly Yield Factors - River: Sabramathi, Dharoi dam site (Source: NIH, 
1987). 
Month 

Monthly 
Yield 
Factor 

Jun 

0.09 

Jut 

0.06 

Aug Sep 

0.06 0.057 

Oct Nov Dec Jan Feb Mar Apr May 

0.093 0.0914 0.0914 0.0914 0.0914 0.0914 0.0914 0.0914 

The reservoir storage performance measures have been computed from the 41-year long 

historical flow sequence as well as the 41 00-year long synthetic flow sequences 

142 



__, 

generated from the three stochastic streamflow models considered (k-NN, HMBB and 

PMABB), for the possible combinations of storage capacity and yield (expressed in % of 

Mean Annual Flow) given below: 

Storage capacities (Mm3
): 500; 600; 700; 732; 800; 900; 1000. 

Yield(% MAF) to be supplied by the reservoir: 50, 55, 60, . . . , 90, 95 . 

A computer program is developed for the reservoir performance computation. The seven 

reservoir performance indicators listed in an earlier section, can be computed using this 

program for the given reservoir storage capacity, yield, monthly yield factor, historical 

flow sequence, synthetic flow sequence and the reservoir operating policy (either 

standard operating policy or any hedging policy). A typical output of the simulation 

program showing the reservoir balance and the computed values of the reservoir 

performance are presented is given in (Appendix I). This output is obtained by routing 

the historical flows through the reservoir using standard operating policy. 

For brevity, only the salient results are presented and discussed in the following 

paragraphs. 

The reservoir performance-yield relationships obtained for the existing reservoir storage 

capacity of 732 Mm3
, using the historical flow sequence as well as the three long 

synthetic sequences generated from the three periodic stochastic models considered are 

presented in Table 4.13 
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Table 4.13: Comparison of the Performance-Yield Relations - Historical Vs Synthetic 
Flows 

Mean Mean 
Event Period Event Period 

Yield Vul Vul Deficit Deficit 
(%MAF) OBR VBR Resilience (Mm3

) (Mm3
) (Mm3

) (Mm3
) 

' Historical 
50 0.9695 0.9712 0.2000 245.19 39.67 170.64 34.13 
55 0.9451 0.9471 0.1852 324.75 43.64 207.29 38.39 
60 0.9106 0.9252 0.2273 368.15 47.61 159.78 36.31 
65 0.8760 0.8931 0.1803 411.54 51 .58 224.73 40.52 
70 0.8476 0.8614 0.1600 454.94 55.54 287.73 46.04 
75 0.8171 0.8308 0.1556 498.34 59.51 322.51 50.17 
80 0.7886 0.8032 0.1346 541 .74 63.48 400.18 53.87 
85 0.7561 0.7756 0.1417 638.42 67.45 399.32 56.57 
90 0.7256 0.7469 0.1556 789.62 71.41 385.95 60.04 
95 0.7012 0.7188 0.1565 942.96 75.38 413.32 64.67 

k-NN 
50 0.9772 0.9801 0.2422 364.43 39.66 130.21 31.54 
55 0.9564 0.9625 0.2240 538.29 43.63 152.88 34.24 
60 0.9297 0.9396 0.2175 852.14 47.60 171 .55 37.32 
65 0.8989 0.9125 0.2083 1018.10 51.57 195.30 40.69 
70 0.8669 0.8830 0.1960 1216.30 55.53 226.98 44.50 
75 0.8338 0.8532 0.1873 1421.60 59.53 255.77 47.91 
80 0.8021 0.8234 0.1804 1626.90 63.57 286.17 51.63 
85 0.7737 0.7945 0.1716 1807.90 67.61 325.47 55.84 
90 0.7446 0.7667 0.1660 1932.90 71 .64 358.23 59.47 
95 0.7163 0.7400 0.1594 2057.90 75.68 395.30 63.00 

HMBB 
50 0.9557 0.9607 0.2082 367.15 39.67 153.90 32.04 
55 0.9307 0.9379 0.1897 691.96 43.64 187.94 35.66 
60 0.9023 0.9122 0.1801 817.00 47.61 216.40 38.98 
65 0.8693 0.8837 0.1694 918.76 51.58 246.81 41.82 
70 0.8394 0.8546 0.1591 1024.00 55.54 288.18 45.85 
75 0.8064 0.8246 0.1538 1151.50 59.51 319.48 49.13 
80 0.7703 0.7943 0.1 538 1321 .00 63.48 336.95 51.82 
85 0.7386 0.7640 0.1547 1448.60 67.45 358.67 55.49 
90 0.7081 0.7346 0.1530 1576.10 71.41 386.95 59.20 
95 0.6843 0.7069 0.1482 1703.70 75.38 430.60 63.80 

PMABB 
50 0.9609 0.9661 0.2269 574.01 39.66 138.54 31.43 
55 0.9342 0.9430 0.2040 710.24 43.63 168.83 34.44 
60 0.9045 0.9164 0.1925 819.26 47.60 197.26 37.97 
65 0.8728 0.8879 0.1809 908.66 51.57 229.14 41.46 
70 0.8406 0.8588 0.1729 998.06 55.58 259.47 44.87 
75 0.8098 0.8295 0.1661 1087.50 59.64 292.59 48.61 
80 0.7803 0.8012 0.1617 1176.90 63.67 323.86 52.36 
85 0.7507 0.7734 0.1579 1266.30 67.71 354.11 55.90 
90 0.7237 0.7466 0.1531 1355.70 71.75 389.81 59.69 
95 0.6982 0.7214 0.1478 1445.10 75.79 429.04 63.42 
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Following points may be observed from Table 4.13: 

-All the three periodic stochastic models preserve the storage performance characteristics 

well. However, HMBB and PMABB models perform better than k-NN model. The k-NN 

model overestimates the two reliabilities, resilience and event vulnerability and under 

estimates the mean event deficit. The PMABB model is seen to be marginally better than 

the HMBB in predicting both the reliabilities. Hence, the PMABB model is adopted for 

further analysis and discussion in this research work. 

4.6.2.1 Storage- Volume Reliability- Yield Relationships 

It is seen from the storage-volume reliability-yield relationships (Fig 4.1 0) that the 

volume reliability declines sharply with increasing yield, while the increase in volume 

reliability with increase in reservoir storage capacity is comparatively less. Moreover, the 

"increase in volume reliability with increase in storage capacity" decreases for higher 

values of storage capacity and this decrease is more pronounced at lower yields, since the 

magnitudes of reliability being dealt with are quite high (above 95%). The actual live 

storage capacity of 732 Mm3 would yield a volume reliability of nearly 83% for 75% 

yield, while it would decrease to a value of 77.3% for 85% yield. If the same volume 

reliability of 83% is to maintained for an increased yield of 85%, than the storage 

capacity is to be increased to I 000 Mm3
, which will require a reservoir storage capacity 

expanston. 

145 



... 

4.6.2.2 Storage - Occurrence Reliability - Yield Relationships 

It may be noted from Fig 4.11 that the storage-occurrence reliability-yield relationships 

follow a similar trend as the storage-volunie reliability-yield relationships except that the 

occurrence reliabilities, in general are about 1% to 2% lower than the volume reliabilities . 

4.6.2.3 Storage- Resilience- Yield Relationships 

It may be observed from Fig.4.12 that the resilience, in general, decreases with increase 

in the yield (for the given storage capacity). However, the decrease in resilience with 

increase in yield is observed to be small. This is because, as yield increases, the increase 

in the number of events (increase in the value of the numerator) is found to be nearly 

proportional to the increase in the number of failure periods (increase in the value of the 

denominator). Likewise, the increase in the resilience with increase in the storage 

capacity (for the given yield), is also negligible, the reason being: the decrease in the 

number of events (decrease in the value of the numerator) is nearly proportional to the 

decrease in the number of failure periods (decrease in the value of the denominator). 
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4.6.2.4 Storage- Period Vulnerability- Yield Relationships 

The period vulnerability-yield relationships (Fig. 4.13) do not exhibit any variation with 

reservoir storage capacity, while the period vulnerability increases significantly with the 

target yield and this increase is found to be directly proportional to the target yield. This 

is because at all the storage capacities, the period vulnerability for a given target yield 

becomes equal to the target yield itself, due to the occurrence of highly critical inflows 

during a certain period in the 41 00-year long synthetic sequence of generated flows; and 

even ifthe storage capacity is assumed to be as high as 1000 Mm3
, the situation does not 

at all result in any improvement despite the additional filling space being available in the 

reservOir. 

4.6.2.5 Storage- Event Vulnerability- Yield Relationships 

The storage-event vulnerability-yield relationships (Fig. 4.14) seem to follow nearly the 

same trend as the storage-period vulnerability-yield relationships (Fig. 4.13), except for a 

minor local variation at 55% target yield. 
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4.6.2.6 Storage- Mean Period Deficit- Yield Relationships 

For a given storage capacity, with increase in the target yield, the mean period deficit also 

increases systematically, in line with the decrease in occurrence reliability (Fig. 4.15). 

This is as per the expected trend. However, for a given target yield, the change in the 

mean period deficit with the storage capacity is found to be almost insignificant, which is 

also in tune with the trend of the behaviour of the occurrence reliability with storage 

capacity. 

4.6.2. 7 Storage- Mean Event Deficit- Yield Relationships 

For a given storage capacity, with increase in the target yield, the mean event deficit also 

increases systematically (Fig. 4.16). However, for a given target yield, the change in the 

mean event deficit with the storage capacity is found to be almost insignificant at lower 

yields, while it is somewhat significant at higher yields. Moreover, it may be noted from 

Fig. 4.16 that for lower storage capacities and higher target yields, the increase in the 

mean event deficit with increase in the target yield is insignificant. This is due to the 

unproportionate increase in the number of events when compared with the number of 

failure periods. 
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4.7 SUMMARY AND CONCLUSIONS 

Over-year Reservoirs 

Following behaviour analysis based on stochastic simulation, S-P-Y relationships have 

been constructed for use in planning and design applications of over-year water supply 

reservoirs, using standard operating policy. These relationships are useful in: (i) gaining 

an understanding of the variation of reservoir performance indicators namely, reliability, 

resilience, and vulnerability on the storage-yield plane; (ii) identifying the sensitive 

ranges of storage capacity of the over-year reservoirs, with regard to performance 

characteristics; and (iii) selecting between capacity expansion and demand management 

options, in case of deficit water supply systems. 

For highly over-year reservoirs, resilience and vulnerability do not seem to improve with 

increase in storage capacity, and hence, the decision regarding storage capacity depends 
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on reliability. Approximate ranges of over-year storage capacity of water supply 

reservoirs, required to meet various target yields with a desirable range of reliability (0.95 

to 0.99) are presented for a few selected cases of Cv and p1 of annual streamflows. For 

lower target yields, there is no significant improvement in resilience at low as well as 

high storage capacities, while a significant improvement is noted for the range in 

between. With increase in target yield, this transition range widens and moves towards 

higher storage capacities, eventually ending up in flat storage-resilience relationships for 

high target yields. In addition, appreciable reduction in vulnerability is noted in a certain 

range of storage capacity and this range widens and moves towards higher storage 

capacities with increase in target yield and/or Cv. This can be exploited in certain water 

supply systems, wherein the marginal value of either increase in resilience or.decrease in 

vulnerability or both, is quite high. A S-P-Y database with a search facility has also been 

developed that would help in planning and design of reservoir capacity and in decisions 

regarding capacity expansion or implementation of demand management programs. 

Within-year Reservoirs 

For the Dharoi reservoir streamflows, the reservoir storage performance measures have 

been computed from the 41-year long historical flow sequence as well as the 4100-year 

long synthetic flow sequences generated from the three stochastic streamflow models 

considered (k-NN, HMBB and PMABB), for seven combinations of storage capacity and 

ten combinations of yield (expressed in% of Mean Annual Flow) given below: 

Storage capacities (Mm\ 500; 600; 700; 732; 800; 900; 1000. 

Yield(% MAF) to be supplied by the reservoir: 50, 55, 60, ... , 90, 95. 
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The results and investigation are presented only for the PMABB model, although the 

HMBB model yields competitive performance. 

The reservoir performance-yield relationships obtained are presented for the existing 

reservoir storage capacity. of 732 Mm3 of Dharoi reservoir, using the historical flow 

sequence as well as the three long synthetic sequences generated from the three periodic 

stochastic models considered. The actual live storage capacity of the Dharoi reservoir 

(732 Mm3
) would yield a volume reliability of nearly 83% for 75% yield, while it would 

decrease to a value of 77.3% for 85% yield. If the same volume reliability of 83% is to 

maintained for an increased yield of 85%, than the storage capacity is to be increased to 

1000 Mm3
, which will require a reservoir storage capacity expansion. 

The decrease in resilience with increase in yield is observed to be small. Likewise, the 

increase in the resilience with increase in the storage capacity (for the given yield), is also 

negligible, the reason being: the decrease in the number of events (decrease in the value 

of the numerator) is nearly proportional to the decrease in the number of failure periods 

(decrease in the value of the denominator). 
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CHAPTERS 

OPTIMAL HEDGING RULES FOR WATER SUPPLY RESERVOIRS 

5.1 INTRODUCTION 

Water Resource projects involve huge initial outlay and hence it is important to operate 

them efficiently not only during normal operating conditions but also during extreme 

situations like droughts. The standard operating policy (SOP) is a simple reservoir 

operating policy that satisfies the demand when sufficient water is available and if not 

supplies the available water. This policy minimizes the total shortage over the operating 

horizon. However during droughts, SOP would result in single period of severe shortage 

(Vulnerability), which could cause heavy loss of life and property. Thus, effective 

demand management strategies must be devised to reduce the severity of shortage by 

distributing the deficits over longer periods. Hedging is one of the simple and common 

demand management strategies employed by water supply managers to reduce the 

severity of droughts. Hedging increases water stored in the reservoir by accepting small 

currents deficits to guard against unacceptable large deficits that may occur in future . 

Thus, hedging provides insurance for high-valued water uses where reservoirs have low 

refill potentials or highly uncertain inflows. 

5.2 LITERATURE REVIEW 

Hedging rule decides the storage allocation of water across time to minimize the impact 

of the drought. The optimal appropriation of water can be done by analysing the benefits 

of current release as against the benefits of storing water for future use as carryover 



storage (Draper & Lund, 2004). However, it is difficult to derive the actual benefit 

function since it is time variant and case specific. Hence, the water supply characteristic 

of reservoirs is used to evaluate their performance. The water shortage characteristics are 

the primary criteria for evaluating the supply-demand relationship of reservoir during 

drought (Shiau, 2003). Hashimoto et al. (1982) proposed the indicators reliability, 

resilience, and vulnerability to measure and monitor the performance of water resource 

systems. Occurrence based reliability is an indicator of the frequency of occurrence of the 

deficit, and is computed as the number of times the target demand is satisfied to the total 

number of operating time periods. Volume based reliability is a measure of the ability to 

satisfy the volume of demand and is computed as the ratio of total water supplied to the 

total water demanded .. Shortage ratio is the ratio of total volume of deficits to total 

volume of water demanded and is an indicator of the total deficit in meeting demand 

during the operating horizon. The shortage ratio is also the complement of the volume­

based reliability. Resilience symbolizes the recovery rate from water shortage (failure) to 

normalcy (success) and is defined as the number of times the system has moved from 

failure to success to the total number of periods the system has been in the failure state. 

Vulnerability is the largest single period shortage encountered during the period of 

operation of the reservoir and is a measure of the severity of the shortage. The evaluation 

of the trade-off between these performance indicators would help the decision makers to 

arrive at the optimal hedging rule (Srinivasan et. al, 1998). Hedging aims to reduce 

vulnerability by increasing the storage, at the onset of the drought, by proactively 

accepting small deficits even when sufficient water is available. This would reduce the 

severity, by distributing the same over more number of periods. However, in some cases, 
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deficits may be accrued in anticipation of a severe drought in future, but the situation may 

not become so severe in future. This may increase the total shortage over the operation 

horizon. Thus, a reduction in vulnerability may result in an increase in shortage ratio and 

vice-versa. The optimal hedging policy must aim to reduce the vulnerability significantly 

with a minimal increase in shortage ratio. 

The trigger for the initiation and the termination of hedging along with the amount of 

rationing to be done in each time step typically characterize a hedging rule. The 

parameters of a hedging rule can be expressed as a function of water available in the 

reservoir, which is the sum of the current storage and the expected inflows into the 

reservoir. Bayazit and Unal (1990) defined the two-point hedging rule in terms of 

starting water availability (volume of water availability above which the reservOir 

release is hedged, SWA) and ending water availability (the volume of water 

availability at which hedging is stopped and normal situation is restored, EWA). In 

case of the two-point hedging rule, when the water availability falls below the SW A, then 

the entire water present in the reservoir is released towards meeting the demand. So the 

storage of the reservoir at the end of this time period will become zero. In the next time 

period, water available becomes the same as the inflow into the reservoir. If the reservoir 

is still facing drought, then the water availability becomes very less and so the 

vulnerability will be the same as in case of standard operating policy. So in order to 

reduce vulnerability, it may be preferable to opt for a hedging policy with a low SWA, 

and high EW A. 
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The effectiveness of hedging rules can be enhanced by having control over the amount 

of water to be released during hedging. Srinivasan and Philipose ( 1996, 1998) 

included the hedging factor as an independent parameter along with the starting 

water availability (SWA) and the ending water availability (EWA) to defme the 

modified two-point hedging rule. The hedging factor specified the amount of 

hedging to be done in each time step. The modified two-point hedging rule essentially 

provides an offset to the SOP in the period where hedging is done. This hedging rule is 

not flexible, as the slope of both the phases of rationing, and the amount of offset 

provided all depend on the single parameter "hedging factor". Hence although this rule 

can be effective in attaining low vulnerabilities, this may be realized at relatively high 

values of shortage ratio. They evaluated the trade-off among the reservoir performance 

indicators for thousands of hedging policies using Monte-Carlo simulation technique. 

This simulation model does not yield the optimal trade-off surface between the 

performance indicators considered. Shih and ReVelle (1994) used mixed-integer non­

linear programming technique and polytope search procedure to find the optimal linear 

hedging rule with starting water availability as the only decision vector, by minimizing 

the maximum shortfall or vulnerability. They found that the mixed-integer non-linear 

programming technique gives better solution than polytope search procedure but at the 

expense of more computing time. They also suggested that the optimal hedging rule 

could be converted into multiple discrete hedging rules for practical implementation. 

Shih and ReVelle (1995) formulated an explicit two-phase discrete hedging 

rule and implemented the same using mixed-integer programming model. This 
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fonnulation sought to determine the trigger volumes for the different phases of 

rationing with the objective of maximizing the number of months in which no 

rationing (or maximizing the reliability) would be required, subject to a constraint on 

the number of months with second phase of rationing. The amount of the rationing to 

be done during the different phases of hedging was pre-fixed and by progressively 

increasing the intensity of rationing, the vulnerability could be decreased. Although 

the discrete hedging rule can be effective in achieving low vulnerability, it is not 

flexible as the slopes of both the phase of rationing are fixed at zero. This is likely to 

reduce the possible number of competent solutions, thus limiting the flexibility to the 

decision maker. Moreover, since the amount of rationing was not internally optimized 

within the formulation, the optimal hedging policy could not be arrived at. Also, this 

fonnulation was solved for only a single critical drought and can,not be easily solved 

for long sequences as done in drought analysis, since large number of mixed integer 

variables would increase the computational burden. Neelakantan and Pundarikanthan 

(1999) determined the threshold to initiate hedging by minimizing the sum of the 

squared deficits. Oliveira and Loucks (1997) proposed a piecewise linear hedging rule 

to derive the optimal hedging operating policy for multi-reservoir systems using genetic 

algorithm (GA). However, the performance of the hedging rule was evaluated based 

only on the single objective of minimizing the total deficit. Shiau (2003) developed a 

reservoir supply index, which was used as an indicator for the onset , the termination 

and the quantum of rationing to be done at each time period. The reservoir 

supply index was defmed as the probability that reservoir storage plus inflows would 
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be sufficient to meet the demand. They also used a number of performance 

indicators to quantify the single period shortage, the event shortage and the long­

term effect. Recently, Shiau and Lee (2005) have explored two types of hedging, 

one based on water availability (defined as storage plus inflow) and the other 

based on the potential shortage condition within a specific future lead-time period. 

The length of lead-time is determined by minimizing vulnerability and shortage ratio. 

Compromise programming was used to solve the multi-objective poblem which, in turn, 

introduced three additional variables, in terms of weights and an exponent. One of 

the significant drawbacks of the compromise programming is the sensitivity 

towards weights. In their works, the weights and the exponent are not internally 

optimized and hence many optimization runs are to be made if a sensitivity analysis 

is to be done on the weights and the exponent. 

5.3 PROPOSED STUDY 

After critically reviewing the existing hedging rules for water supply reservotr 

operation during droughts, a new hedging rule is proposed in this study by 

effectively combining the two existing hedging rules, namely, modified 2-point 

hedging rule and discrete hedging rule, with the aim of introducing more flexibility 

into the hedging formulation and thus obtain more competent trade-off solutions. 

The new hedging rule proposed herein, being more flexible and more general than 

the other hedging rules discussed, is expected to provide more efficient, effective 

and continuous distribution of the trade-off relation between the objective 

functions. Although a number of hedging rules exist in literature, there has not been 
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any comparative study that investigates the efficacy of the trade-off solutions 

obtained using these hedging rules in a multiple objective optimization model 

framework that seeks to minimize the vulnerability as well as the shortage ratio 

over the period of operation considered. Hence, there is a need to develop a multi­

objective optimization framework that is able to compare across different hedging 

rules and arrive upon the hedging rule that yields the best set of trade-off solutions 

for the given problem. This framework should also explicitly incorporate the 

different probabilistic reservoir performance indicators as constraints within the 

multi-objective framework. An attempt is made in this study to develop such a 

framework that would enable the managers of water supply projects to find the 

most appropriate hedging rule so that the water supply reservoirs can be operated 

prudently during droughts. 

5.4 MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK 

The following multi-objective optimization framework is developed in this 

research work to obtain the optimal trade-off between the two surrogate objective 

functions mentioned below, for the proposed hedging rule as well as four of the 

popular hedging rules existing in the literature. 

Objective Functions: 

I) Minimize Period Vulnerability: Zl = Minimize{Max (Dt - Rt)} . .. (5.1) 

2) Minimize Shortage Ratio: Z2 = Minimize {I ((Dt - Rt) I I D,} ... (5.2) 

where Dt denotes the demand at time t, Rt denotes the release to be made at time t. 
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Constraints: 

Performance Related Constraints: While shortage ratio (complement to volume based 

reliability) and vulnerability are two of the two primary indicators that need to 

be minimized during critical drought, it is also desirable to keep some of the other 

performance related constraints (such as the number of deficit periods during the 

operation horizon) under check. This will help in increasing the perceived 

confidence of the stakeholders in the drought management system being practiced. 

Some ofthe typical performance related constraints are listed below (eqs. 5.3-5.7). 

Occurrence based reliability 
M 

R =1-occ 

Ldj 
~ 

T 
~ c1 

dj = duration of the jth failure event 
M = total number of failure events 
T = total number of periods of operations 

Resilience 
M 

Res = -M- ~ C2 

Ldj 
j =1 

dj = duration of the jth failure event 

Event vulnerability 

VE = max[E11E2, •.••••• Ei ... EMJ ~ C3 

dl 

Ej = I(q -Ri) j=1,2, ... ,M 
i=1 

Di = demand at period i 
Ri = release at period i 
Ej = total deficit in lh failure event 
dj = duration of the lh failure event 

(5.3) 

(5.4) 

(5.5) 
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Mean event deficit 
T 

ID, -R, 
MD - t=1 < event- M - c4 

Mean period deficit 

T 

"D-R, 
~ t < c 
t=1 - 5 MDpenod = N 

N =total number of failure periods 

(5.6) 

(5.7) 

In equations (5.3)-(5.7), c1, c2, ••. , c5 denote pre-specified limiting performance values. 

Constraints specifying the hedging rules: 

The constraints that specify the hedging rules are presented and discussed in this section. 

Four hedging rules are presented including the one proposed in this research work. 

Constraints corresponding to any one of the four rules (optional) can be activated within 

the framework and solved. 

5.4.1 HEDGING RULES 

5.4.1.1 Two-point Hedging Rule 

The definition sketch of the two-poiJ?.t hedging rule suggested by Bayazit and Unal 

(1990) is presented in Fig. 5.1. Equations (5.8) to (5.14) describe this hedging rule. 
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Release 

D 

D D+C Water Availability 

Fig. 5.1 Definition Sketch of two-point hedging rule 

Rt=St+Qt if St+Qt ~SWAt (5.8) 

(St +Q - SWAt )(Dt -SWA,) 
if SWAt ~ St +Qt ~ EWAt (5.9) ~ =SWA, + 

(EWA, -SWAt) 

Rt = Dt if EW At ~ St+Qt S Dt+C (5.10) 

Rt = St+Qt-C if St+Qt > Dt+ C (5.11 ) 

St+ I = St + Qt - Rt (5.12) 

SWA1 = a* Dt (5.13) 

EWA1 = Dt + (C * ~) (5.14) 

In eqs. (5.8)-(5.14), St denotes the initial storage, St+t the fmal storage, R1 the release and 

Q1 the inflows during time t period and C the capacity of the reservoir. Herein, the water 

availability is defmed as the sum of the current storage and the expected inflows. In this 

hedging policy, a linear hedging is implemented when the water availability falls between 

the starting water availability (SWAt) and the ending water availability (EWA1) (eq. 5.9). 

Below SWAt. no hedging is done (eq 5.8) and the all the available water is released to 

satisfy the demand. If the water availability exceeds EW At ( eq 5.1 0), then, no hedging is 
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implemented and water is released to satisfy the entire demand. If the water availability 

exceeds the sum of storage capacity and demand ( eq 5.11 ), then after meeting the 

demand, the surplus amount of water is spilt over from the system. Equation (5.12) is the 

continuity equation for the single reservoir system that relates the final storage at the end 

of the period of operation to St. Q1 , and R1 • Herein, evaporation is not considered in the 

formulation. 

In the optimization formulation of the two-point hedging rule, the decision vector 

consists of two parameters namely, starting water availability and ending water 

availability, expressed in terms of a and p, respectively. 

5.4.1.2 Modified two-point hedging 

The basic definition sketch of the modified two-point hedging rule suggested by 

Srinivasan and Philipose (1996, 1998) is presented in Fig 5.2. Equations (5.15) to 

(5.22) describe this hedging rule. This hedging rule rations on the demand when the 

water availability in any period falls in the range between the demand (Dt) and the 

ending water availability (EWA1) (eq. 5.17); while, hedging is done on the water 

availability, when the water availability itself falls in the range between the 

starting water availability (S W A1) and the demand ( eq. 5 .16). Hedging factor 

(HF) specifies the amount of rationing/hedging to be done. For simplicity, a 

constant HF is used in both stages. Below a water availability of SWAt. the 

available water is released (eq. 5.15), whereas above a water availability ofEWAt. 

the full demand is released (no hedging) ( eq. 5 .18). When the water availability is 

greater than (D1 + C), the demand is fully satisfied and the surplus water is spilt from tre 

reservoir (eq. 5.19). 
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Fig.5.2 Sketch of modified two-point hedging rule 

Rt = St + Ot if St+Qt ~SWAt (5.15) 

Rt = (1-HF)*(St + Qt) if SWAt< St + Q, :S Dt (5.16) 

Rt = (1- HF)*(Dt) if Dt < St + Qt ~ EW At (5.17) 

Rt=Dt if EW At < s, + Ot :s Dt + c (5.18) 

R1 = S1+Q1 -C if St + Ot > Dt + c (5.19) 

St+ I = St + Ot - Rt (5.20) 

SWA1 =a * Dt (5.21) 

EWA1 = Dt + (C * p) (5.22) 

The decision variables in case of the modified two-point hedging rule are a, p and 

hedging factor (HF). 

5.4.1.3 Discrete hedging 

The defmition sketch of the discrete hedging rule proposed by Shih and Revelle 

(1994, 1995) is presented in Fig.5.3. Equations ( 5. 2 3) to ( 5. 3 1) describe this 

hedging rule. In this rule two phases of rationing of the demand are introduced 
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progressively and the amount of rationing depends on the severity expressed in terms of 

water availability. When the water availability exceeds V1p (eq. 5.26), no rationing is 

implemented. When the availability goes below this value, only a part of the demand (a, 

* D1) would be released. This is the first phase of rationing. If the water availability 

becomes lesser than V2p (eq. 5.24), then a more severe second phase of water rationing is 

implemented. If the water availability becomes lesser than V3p (eq. 5.23), no water is 

released from the system. On the other hand, if the water availability is greater than the 

reservoir storage capacity even after satisfying the full demand, then the surplus over the 

capacity will be spilt. This condition is described by eq. (5.27). 

D 

a1D 

azD 

Release 

V3p V2p V,p D+C 

Fig. 5.3: Definition Sketch of discrete hedging rule 

Rt = O if St + Qt S V 3p 

Rt = a2 Dt if V 3p < St + Qt S V 2p 

Rt = a, Dt if V2p < St + Qt S V1p 

Rt = Dt if V Ip < St + Qt S Dt + C 

Rt = St + Qt - C if St +Qt > Dt + C 

Water Availability 

(5 .23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 
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St+ I = s. + Qt - Rt 

V1p = Dt+(k3 *C) 

V 2p = Dt - (k2 * C) 

V3p=Dt-(k1 *C) 

The decision variables of discrete hedging rule are a1, a2, k~, k2 and k3. 

5.4.1.4 Proposed Hedging Rule 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

The definition sketch of the new hedging rule proposed in the present study is shown 

in Fig. 5.4. Equations (5.32) to ( 5.39) describe this hedging rule. The new hedging rule 

consists of two phases of rationing and the amount of release in each phase is linear 

function of the water availability. The slope of each linear phase is a decision vector. In 

order to provide added flexibility the starting point of each phase of hedging is 

provided with an offset just like in case of modified two point hedging rule(Fig 5.2). 

The hedging rule proposed in the present study is a more generic hedging rule as 

the other tvA:> hedging rule are special case of this hedging rule. When the slope of both 

the phases of rationing is zero then tre hedging rule becomes discrete hedging rule. If 

the slope of each linear phase equals the amount of offset provided then the proposed 

hedging rule becomes modified two-point hedging rule. 
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Fig 5.4: Definition Sketch of the Proposed Hedging Rule 

According to this rule, when the water availability exceeds V 1 P ( eq. 5.3 5), no rationing 

is implemented. If the water available is less than V lp and more than V2p (eq 5.34) then 

the first linear phase of rationing is implemented. If the water availability goes below 

V2p but more than V3p (eq. 5.33) then a more severe phase of linear rationing is 

enforced. If the water available is less V 3p (5.32) then the available water is released. If 

the water available in reservoir after satisfying the demand exceeds the reservoir 

capacity then the excess water is spilled over (eq. 5.36). 

Rt = St + Qt if St + Qt <= V 3p (5.32) 

Rt = m1*(St + Qt- V3p)+ <11 Dt if V 3p < St + Qt <= V 2p (5.33) 

Rt = m2*(St + Qt- V2p)+ <12 Dt if v 2p < St + Qt <= vI p (5.34) 

Rt= Dt if vI p < St + Qt <= Dt + c (5.35) 

Rt=St+Qt-C if St+Qt > Dt + C (5.36) 
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V1p=Dt+(k3 *C) 

V 2p = Dt - (k2 * C) 

V 3p = Dt - (k1 * C) 

The decision vectors of proposed hedging rule are a~, a2, m1, m2, k~, k2 and k3. 

5.5 SOLUTION TECHNIQUE 

(5.37) 

(5.38) 

(5.39) 

Genetic Algorithm (GA) is a search technique random search that explores the solution 

space for promising regions and then search for solutions more intensely in these 

promising regions. Genetic Algorithm are based on a simple assumption that the best 

solution is found in regions of solution space having high proportion of good solution 

(Oliveira and Loucks, 1997).The evolution starts from a population of completely random 

individuals and happens in generations based on the principle of the "survival of the 

fittest". Since GA deals with a population of points rather than a single point like in 

classical methods, it reduces the chances of getting trapped at some local optimum. 

Moreover multiple objective evolutionary algorithms (MOEAs) are suitable for 

handling complex problems involving discontinuities, disjoint feasible spaces and 

noisy function evaluation (Fonseca and Fleming, 1995). A powerful multi-objective 

genetic algorithm known as Non-Dominant Sorting Genetic Algorithm - II (Deb et 

al., 2002) is used for solving the multiple objective optimization model. 

NSGA-11 was proposed by Deb et.al. (2002) to overcome the high computational 

complexity of non-dominant sorting, lack of elitism and the need for specifying a 

sharing parameter in the non-dominant sorting based MOEAs. NSGA-11 evolves the 
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trade-off surface from a random parent population of size N. The parent population is 

ranked based on non-domination and each non-dominated solution is assigned a fitness 

rank. The child population of size N is created from the parent population through binary 

tournament selection, crossover and mutation. Binary tournament selection ensures that 

the solution having better fitness function has higher probability of selection for cross­

over and mutation. Crossover operator combines two chromosomes to produce a new 

chromosome. The new chromosome may give better fitness function than the parents if it 

takes best characteristics from the parents. Mutation operator alters one or more gene in a 

chromosome. As a result a new gene is added to gene pool and genetic algorithm may be 

able to arrive at better solution through a new search path. Mutation occurs according to 

user defined probability and it is set at a low value to prevent the search from turning to 

random search. A mating pool of size 2N is formed by combining the parent population 

and the child population. The mating pool is fast non dominated sorting procedure to 

identify the non-dominant fronts. If the number of non-dominant solutions in the fronts 

exceeds the population size N then the crowded comparison operator is used to reject the 

solutions from the last front. The crowded distance operator is used to preserve the 

diversity of the solutions. The above procedure is repeated till the stopping generation is 

reached. Fig. 5.5 gives the block diagram of the working of the multi-objective 

optimization framework. 
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Fig 5.5: Block diagram of the Multi-objective Optimization Framework 
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5.6 CASE EXAMPLE- DHAROI RESERVOIR 

For the purpose of evaluating the storage performance of the alternative hedging 

policies, one long synthetic sequence of monthly inflows of 41 00 years similar to the 

historical sequence of 41 years of monthly flow data measured near Dharoi reservoir 

site, India, has been generated using the Perturbed Matched Block Bootstrap (PMABB) 

proposed in the third chapter of this report. The monthly streamflow data, model 

structure identification, estimation/selection of parameters, generation of data, 

verification and validation exercises have already been discussed as part of Chapter 4 of 

this report. The performance of the four different hedging rules is evaluated by routing 

the synthetic flows through a single hypothetical water supply reservoir (Dharoi) 

using the synthetic streamflows from PMABB. The multi-objective genetic algorithm 

described earlier is linked to this simulation program for evaluating the fitness functions 

and checking if the constraints are satisfied. A typical simulation based output obtained 

by routing the historical flows through the Dharoi reservoir is shown in Appendix-2. This 

work assumes two different yield levels, namely, 75% and 85% MAF. Also, two 

formulations, one unconstrained and another constrained have been run and the results 

have been processed and tabulated. These will be discussed in a later section. 

Sensitivity Analysis 

A brief sensitivity analysis of the various parameters of the multi-objective genetic 

algorithm was done. Based on these results, one set of parameters is adopted for all the 

four hedging cases for both unconstrained and constrained formulations. This set of 

parameters is given in Table 5.1. 

170 



Table 5.1 Parameters ofNSGA-II 
S.No. Parameters of Two- point Modified Two- Discrete Proposed 

NSGA-II 
Hedging point Hedging Hedging Hedging 

Rule Rule Rule Rule 

1 Crossover Probability 0.70 0.70 0.70 0.70 

2 Mutation Probability 0.010 0.010 0.010 0.010 

3 Random Seed 0.40 0.40 0.40 0.40 

4 Population 100 100 100 100 

5 Generation 300 300 300 300 
---- -- -- --- --- ----- --' --- -- -

5.7 RESULTS AND DISCUSSION 
5.7.1 Discussion of Results- Unconstrained Formulation 

The non-dominant fronts that indicate the trade-off between the period vulnerability 

and the shortage ratio, obtained from the four different cases of hedging 

corresponding to the unconstrained formulation are presented in Figs. 5.6 and 5.7 

respectively for 75% MAF and 85% MAF yields. 
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Fig 5.7: Trade-off between Shortage Ratio and Vulnerability­
Unconstrained case; Yield = 85% MAF 

It is observed from Fig. 5.6 that the trade-off curve obtained using the two-point 

hedging rule does not yield solutions in the domain of low vulnerability, although on 

the other extreme, it is able to yield a solution with the least SR. The non-dominant 

front obtained in this case is apparently far from pareto-optimality. This is because 

the flexibility offered by this hedging rule is limited due to the constant ratio of the 

release of the water availability throughout the hedging period Fig.5.1 the same 

behavior is also portrayed by Fig. 5.7., which also refers to the unconstrained case 

but with a higher yield of 85% MAF. 

A further observation from Fig. 5.6 is that the discrete hedging rule yield very less 

number of non-dominant solutions in the low vulnerabi lity domain, thus offering 

less flexibility for decision-making. However, this rule also performs well in the low 
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shortage ratio region. On the other hand, the modified two-point hedging rule and 

the proposed hedging policy offer a good spread of non-dominant solutions in the 

low vulnerability as well as the low shortage ratio domains. On the low vulnerability 

side the modified two-point hedging rule is seen to perform slightly better, while the 

proposed hedging rule performs marginally better in the low shortage ratio domain. 

However, the coverage and the density of non-dominant solutions obtained are 

somewhat better in case of the proposed hedging rule. Similar behavior of these two 

hedging rules is also observed in case of 85% yield (Fig. 5.7.), except that the 

proposed hedging rule performs better in the low vulnerability region as well. 

More detailed results obtained from the simulation of the three selected hedging 

policies (one from either extreme of the non-dominant front and one compromising 

policy based on nearness to the origin on the multi-objective space) for all the four 

cases of hedging, are shown in Table 5.4 and 5.5. Also, the corresponding decision 

vectors and the evaluated objective function values of these three selected hedging 

policies for all the four cases of hedging are presented in Tables 5.2 and 5.3 

respectively. 
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Table 5.2 Hedging Parameters for three selected Non-dominated solutions­
Yield= 75%: Case: Unconstrained: Reservoir: Dharoi - ' ' 

Hedging Period SR 
I Policy and Decision Vector (Hedging Parameters) Vul. (%) 

Objectives (Mm3
) 

2 Point Hedging a IJ 
Obj.l: 

0.15 1.00 50.156 29.789 
Min. (Vul) 
Compromise 

0.12 0.82 51.937 26.285 
Policy 
Obj.2: 

0.23 0.00 59.638 17.049 
Min. (SR) 
Modified 2-point a p HF Hedging 
Obj.l: 

0 .31 0.96 0.64 38.753 51.945 
Min. (Vul) 
Compromise 

0.20 0.46 0.71 42.992 26.876 
Policy 
Obj.2: 

0.99 0.58 . 0.00 59.638 17.049 Min. (SR) 
Discrete 
Hed2in2 a1 a2 kt kl k3 
Obj.l: 

0.31 0.01 0.12 0.57 0.52 41.781 29.253 
Min. (Vul) 
Compromise 

0.27 0.22 0.25 0.3 0.36 44.203 23.664 
Policy 
Obj.2: 

0.31 0.12 0.13 0.32 0.00 60.552 17.300 Min. (SR) 
Proposed 

at a2 m. m2 kt k2 k3 Hedging 
Obj.l: 

0.01 0.31 0.19 0.01 0.21 0.32 0.91 40.838 46.130 Min. (Vul) 
Compromise 

0.01 0.30 0.22 0.00 0.05 0.32 0.45 42.386 26.272 
Policy 
Obj.2: 

0.67 0.67 0.95 0.58 0.68 1.00 0.00 59.617 17.054 Min. (SR) 

Vul: Period Vulnerability (Mm'); SR: Shortage Ratio(%) 
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Table 5.3 Hedging Parameters for three selected Non-dominated solutions­
Yield = 85%; Case: Unconstrained; Reservoir: Dharoi 
Hedging Period 
Policy and Decision Vector (Hedging Parameters) Vul. 
Objectives (Mm3) 

2 Point Hedging a IJ 
Obj. l: 0.11 1.00 59.444 
Min. (Vul) 
Compromise 

0.08 0.72 61.691 
Policy 
Obj.2: 

0.23 0.00 67.710 
Min. (SR) 
Modified 2-point a IJ HF 
Hed2in2 
Obj.l: 

0.70 0.88 0.69 47.351 
Min. (Vul) 
Compromise 

0.93 0.48 0.74 50.782 
Policy 
Obj.2: 

0.99 0.58 0.00 67.710 
Min. (SR) 
Discrete kt kz k3 Hed2in2 at az 

Obj.l: 
0.31 0.09 0.15 0.93 0.88 47.351 

Min. (Vul) 
Compromise 

0.23 0.08 0.13 0.24 0.36 52.841 
Policy 
Obj.2: 

0.79 0.27 0.27 0.80 0.00 68.625 
Min. (SR) 
Proposed llt az m) ml kt kz kJ Hed2ing 
Obj . l: 

0.08 0.31 0.75 0.00 0.16 0.40 0.80 47.351 Min. (Vul) 
Compromise 

0.13 0.25 0.95 0.00 0.18 0.51 0.41 51.469 Policy 
Obj.2: 

0.71 0.71 0.95 0.62 0.71 0.90 0.00 67.710 
Min. (SR) 

Vul: Period Vulnerability (Mm.,); SR: Shortage Ratio(%) 

SR 
(%) 

34.584 

29.794 

22.660 ! 

52.619 

34.270 

22.660 

52.619 

30.023 

22.919 

48.155 

31.436 

22.670 
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Table 5.4 Comparison ofDharoi Reservoir Performance for SOP and Four Hedging 
Policies for three selected Non-dominant solutions; Demand- 75%; Case: Unconstrained 

Reservoir Performance Indicators• 

Policy 
Non-dominant Period Event Avg. Avg. 

Solutions OBR VBR Res. Vul. Vul. Period Event 
(Mm3

) (Mm3
) Def Def 

SOP 
0.8098 0.8295 0.1661 1087.50 59.64 292.59 48.61 

Obj.l: 

Two 
Min. (Vul) 0.1088 0.7022 0.0505 4688.30 50.16 358.73 18.13 

point 
Compromise 
Policy 0.2503 0.7372 0.0688 4636.90 51.94 276.37 19.02 

Hedging 
Obj.2: 
Min. (SR) 0.8098 0.8295 0.1661 1087.50 59.64 292.59 48.61 
Obj.l: 

Modified Min. (Vul) 0.2299 0.4806 0.0910 3662.10 38.75 402.13 36.58 
Two- Compromise 
point Policy 0.6409 0.7313 0.1737 3277.60 42.99 233.70 40.59 

Hedging Obj.2: 
Min. (SR) 0.8098 0.8295 0.1661 1087.50 59.64 292.59 48.61 
Obj.l: 
Min. (Vul) 0.5974 0.7075 0.1707 3266.70 41.78 230.82 39.41 

Discrete Compromise 
Hedging Policy 0.6932 0.7634 0.1654 2232.80 44.20 252.92 41.84 

Obj.2: 
Min. (SR) 0.8170 0.8270 0.1808 1036.90 60.55 283.58 51.28 
Obj.l: 
Min. (Vul) 0.2515 0.5388 0.0896 3874.30 40.84 373.03 33.43 

Proposed Compromise 
Hedging Policy 0.6434 0.7374 0.1711 323 1.40 42.39 233.5 1 39.96 

Obj.2: 
Min. (SR) 0.8098 0.8295 0.1662 1087.50 59.62 292.67 48.63 

• The reservoir performance indicators have been computed using 41 00-year long monthly synthetiC 
streamflow sequence generated from PMABB model 
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Table 5.5 Comparison ofDharoi Reservoir Performance for SOP and Four Hedging 
Policies for three selected Non-dominant solutions; Demand - 85%; Case: Unconstrained 

Reservoir Performance Indicators* 

Policy 
Non-dominant Period Event Avg. Avg. 

Solutions OBR VBR Res. Vul. Vul. Period Event 
(Mm3

) (Mm3
) Def Def 

SOP 0.7507 0.7734 0.1579 1266.30 67.71 354.11 55.90 

Obj.l: 
0.1012 0.6541 0.0468 5857.70 59.44 505.95 23.66 

Two 
Min. (Vul) 

point 
Compromise 

0.2805 0.7020 0.0721 5777.20 61.69 353.21 25.46 
Hedging 

Policy 
Obj.2: 

0.7507 0.7734 0.1579 1266.30 67.71 354.11 55.90 
Min. (SR) 
Obj.I : 

0.2770 0.4737 0.1008 4474.60 47.35 444.21 44.76 
Modified Min. (Vul) 

Two- Compromise 
0.5603 0.6573 0.1670 3971.30 50.78 286.92 47.91 

point Policy 
Hedging Obj.2: 

0.7507 0.7734 0.1579 1266.30 67.71 354.11 55.90 
Min. (SR) 
Obj.l: 

0.2770 0.4737 0. 1008 4474.60 47.35 444.21 44.76 
Min. (Vul) 

Discrete Compromise 
0.6311 0.6997 0.1697 2669.10 52.84 294.91 50.05 Hedging Policy 

Obj.2: 
0.7574 0.7708 0.1656 1266.00 68.63 350.92 58.10 Min. (SR) 

Obj.l: 
0.3377 0.5184 0.1089 4428.00 47.35 410.63 44.71 

Min. (Vul) 
Proposed Compromise 

0.6022 0.6856 0.1654 3587.90 51.47 293.84 48.60 Hedging Policy 
Obj.2: 

0.7509 0.7733 0.1581 1266.30 67.71 354.07 55.96 
Min. (SR) 

* The reservoir performance indicators have been computed using 41 00-year long monthly synthetic 
streamflow sequence generated from PMABB model 
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5.7.2 Discussion of Results- Constrained Formulation 

After carefully analyzing the simulated performance results of the unconstrained 

formulation, it was decided to make some more runs with a view to converge to a 

narrow domain in the decision space to enable selection of a compromising policy for 

implementation. The constraints of the formulation were activated in such a way that 

there should be sufficient flexibility while searching for the non-dominant solutions, 

and at the same time convergence to a narrower domain should be achieved. For the 

75% MAF yield scenario, after a careful inspection of Table 5.2 (that gives the range 

of performance evaluation of the non-dominant solutions for the unconstrained 

formulation), the following lower/upper limits were introduced for three of the 

performance indicators (other than shortage ratio and period vulnerability): 

Occurrence Reliability 

Mean Period Deficit 

Mean Event Deficit 

::::.0.60 

S 45.0 Mm3 

S 300.0 Mm3 

The decisions regarding the constraints to be activated and the limits to be plugged in 

for the same were done after sufficient trials. The results of this exercise are presented 

in Fig. 5.8, Tables 5.6 and 5.7. 
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Table 5.6 Hedging Parameters for three selected Non-dominated solutions­
Yield= 75%; Case: Constrained; Reservoir: Dharoi 
Hedging Period 
Policy and Decision Vector (Hedging Parameters) Vul. 
Objectives (Mm3) 

2 Point Hedging a p 
Obj.l: 

0.05 0.38 56.075 
Min. (Vul) 
Compromise 

0.05 0.38 56.075 
Policy 
Obj.2: 

0.95 0.03 59.638 
Min._(SR) 
Modified 2-point p HF Hedging a 
Obj.l: 

0.94 0.46 0.72 43.597 
Min. (Vul) 
Compromise 

0.90 0.38 0.74 44.809 
Policy 
Obj.2: 

0.95 0.04 0.01 59.638 
Min. (SR) 
Discrete 
Hed2in2 (ll az kt kz k3 
Obj.l: 

0.3 0.06 0.08 0.37 0.45 42.386 
Min. (Vul) 
Compromise 

0.3 0.06 0.08 0.37 0.45 42.386 
Policy 
Obj.2: 

0.91 0.34 0.34 0.92 0.05 60.552 
Min. (SR) 
Proposed 

(ll az m. mz kt kz k3 Hedging 
Obj.l: 

0.08 0.23 0.80 0.01 0.16 0.24 0.51 44.679 
Min. (Vul) 
Compromise 

0.00 0.23 0.80 0.01 0.16 0.24 0.34 45.684 
Policy 
Obj.2: 

0.27 0.79 1.00 0.31 0.27 0.8 0.51 59.617 
Min. (SR) 

Vul: Period Vulnerability (Mm'), SR: Shortage Ratio(%) 

SR 
(%) 

19.527 

19.527 

17.054 

i 

27.077 

24.387 

17.052 

26.272 

26.272 

17.348 

29.238 

23.089 

17.075 
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Table 5.7 Comparison ofDharoi Reservoir Performance for SOP and Four Hedging 
Policies for three selected Non-dominant solutions; Demand -75%; Case: Constrained 

Reservoir Performance Indicators* 

Policy 
Non-dominant Period Event Avg. Avg. 

Solutions OBR VBR Res. Vul. Vul. Period Event 
(Mm3

) (Mm3
) Def Def 

SOP 0.8098 0.8295 0.1661 1087.50 59.64 292.59 48.61 

Obj.l: 
Min. (Vul) 

0.6042 0.8048 0.1027 4211.70 56.08 260.54 26.76 
Two 
point 

Compromise 
0.6042 0.8048 0.1027 4211.70 56.08 260.54 26.76 

Policy 
Hedging 

Obj.2: 
Min. (SR) 

0.7925 0.8295 0.1551 1602.50 59.64 287.30 44.57 

Obj.l: 
0.6437 0.7293 0.1763 2925.30 43.60 233.84 41.22 

Modified Min. (Vul) 
Two- Compromise 

0.6883 0.7562 0.1705 1752.50 44.81 248.94 42.44 
point Policy 

Hedging Obj.2: 
0.7857 0.8295 0.1483 1602.90 59.64 290.95 43.15 

Min. (SR) 
Obj.l: 

0.6434 0.7374 0.1711 3231.40 42.39 233.51 39.96 
Min. (Vul) 

Discrete Compromise 
0.6434 0.7374 0.1711 3231.40 42.39 233.51 39.96 

Hedging Policy 
Obj.2: 

0.7864 0.8265 0.1511 1600.90 60.55 291.53 44.06 
Min. (SR) 
Obj.l: 

0.6097 0.7077 0.1753 3116.90 44.68 231.73 40.63 Min. (Vul) 
Proposed Compromise 

0.7014 0.7691 0.1612 1750.50 45.68 260.20 41.94 
Hedging Policy 

Obj.2: 
0.7911 0.8293 0.1570 1447.70 59.62 282.49 44.34 Min. (SR) 

* The reservoir performance indicators have been computed using 41 00-year long monthly synthetic 
streamflow sequence generated from PMABB model 

The comparison of the non-dominant fronts presented for the four cases of hedging 

(Fig 5.8) shows that: 

i) The two-point hedging rule does not yield any solution in the intermediate and 

lower ranges of vulnerability, and in general, performs poorly. 

ii) The modified two-point hedging rule yields some good non-dominant solutions 

in the lower vulnerability region, but results in higher shortage ratios in most 

parts of the intermediate and higher vulnerability ranges. 
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iii) The discrete hedging rule yields limited number of non-dominant solutions 

compared with the modified two-point hedging rule and the proposed hedging 

rule. Although this is yielding some very good solutions near the lower 

vulnerability region, only a single solution is obtained in the entire 

intermediate ranges of shortage ratio and vulnerability (which form the major 

part of the compromising domain). Thus, this rule, when implemented into the 

multi-objective optimization formulation, does not seem to yield sufficient 

number of trade-off solutions to facilitate the decision-making process from a 

practical stand-point. 

iv) The proposed hedging policy, is able to yield sufficient number of non­

dominant solutions when compared with all the other three rules and provides 

very good non-dominant solutions near the minimum shortage ratio domain. 

However, the non-dominant solutions obtained for the proposed hedging rule, 

although well spread and are sufficient in number that offer the flexibility for 

decision-making its pareto-optimality near the low vulnerability region, is 

somewhat poorer than the other two competing rules 

5.8 SUMMARY & CONCLUSIONS 

A multi-objective optimization framework has been developed to evaluate optimal 

hedging rules. This employs NSGA-II, an efficient multi-objective genetic 

algorithm technique that can handle constrained formulations. The evaluation 

ofthe non-dominant solutions on the trade-off surface between the conflicting 

objectives of minimization of vulnerability and minimization of shortage ratio 
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helps us to compare the performance of the different hedging rules under water 

shortage conditions. 

A new hedging rule has been proposed in the present study which is more 

generic than the discrete hedging rule and the modified two-point hedging rule. 

From the results of the optimal hedging studies done using the Dharoi reservoir 

data, the proposed hedging rule is shown to produce efficient non-dominant 

fronts containing well-distributed non-dominant solutions. The compromising 

hedging policies obtained using the proposed rule is shown to yield a number of 

trade-off solutions that exhibit good performance with regard to the different 

reservoir storage performance indicators. 
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CHAPTER6 

SUMMARY AND CONCLUSIONS 

6.1 Hybrid Non-linear Data-driven Model for Annual Streamflows 

A hybrid model that blends the two non-linear data-driven models, ANN 

(deterministic) and MBB (stochastic) is proposed for modeling annual streamflows of 

rivers that exhibit complex dependence. First, a nonlinear deterministic model, ANN 

(radial basis function network) is fitted to the historical annual streamflows, which 

captures the nonlinear trend in the data effectively. Then, the resulting residuals from 

the ANN model are resampled using a non-parametric resampling technique, moving 

block bootstrap with a view to capture the weak linear as well as the nonlinear 

dependence and any distributional information retained in the residuals. The proposed 

model has been applied to three annual streamflow data sets that exhibit complex 

dependence, drawn from different geographic regions with varying record lengths. The 

effective blending of the two data-driven models is shown to result in efficient 

simulations of the long-term storage and drought-related characteristics. 

The ANN based Hybrid Model (ANNHM), being a completely data-driven model, 

reproduces the features of the marginal distribution more closely compared to Linear 

Parametric based Hybrid Model (LPHM), but offers less smoothing and little 

extrapolation value. However, the linear dependence structure is better reproduced by 

LPHM than ANNHM. 

Despite a better preservation of the linear dependence structure, LPHM does not seem 

to effectively predict the variation of critical drought duration with respect to 
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truncation level. On the contrary, ANNHM is able to model the variation of critical 

drought duration better, even though the preservation of linear dependence structure is 

inferior to LPHM. This is plausibly due to the effective blending of the two nonlinear 

models. Also, the mean drought characteristics are more efficiently modeled by 

ANNHM. 

The relative bias in predicting the reservoir storage statistics at lower demand levels is 

found to be high in case ofLPHM. Moreover, a large spread of the same is observed at 

all demand levels, thus increasing the relative RMSE significantly compared with 

ANNHM. 

Future research should address the extension of the proposed ANN-based hybrid 

model to single-site and multi-site modeling of periodic stream flows. Also, different 

hybrids could be tried and some smoothing can be introduced to get better variety and 

variability of the generated flows and the predicted water use characteristics thereof. 

6.2 Periodic Stochastic Models for Monthly Streamflows 

A new nonparametric method of conditional bootstrap is presented for simulating 

multi-season hydrologic time series. It resamples non-overlapping within-year blocks 

of hydrologic data (formed from the observed time series) using the rank matching rule 

of Car/stein et a/. [1998]. This algorithm searches the historical record to find 

neighbouring blocks whose ends closely match the end element of the current block 

and subsequently resamples their successor blocks. The resampled blocks are 

perturbed using a weighted smoothing strategy with a window size of 12 months to 

achieve smoothing and extrapolation in simulations. 
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The proposed method, namely, perturbed matched-block bootstrap (PMABB), is 

shown to be efficient in reproducing a wide variety of statistical attributes for both 

hypothetical and real data sets. The verification and validation results preseryted here 

support PMABB as a plausibly better alternative to the non-parametric method "k-

nearest neighbour bootstrap of Lall and Sharma ( 1996)" and the hybrid periodic model 

HMBB of Srinivas and Srinivasan [200 1 a,b] in simulating periodic stream flows. It is 

believed that PMABB can provide a rather flexible and adaptive method for simulating 

time series at finer time scales (e.g., weekly, daily and hourly), where there is 

progressively more structure to exploit. 

The method provides simulations that are efficient in reproducing summary statistics, 

dependence structure and the salient features of the marginal distribution, without 

compromising on smoothing, extrapolation and variety in simulations. As a result, 

better prediction of storage capacity and critical run characteristics for water resources 

design is achieved. 

6.3 Storage-Performance-Yield (S-P-Y) Relationships for Reservoirs 

Over-year Reservoirs 

Following behaviour analysis based on stochastic simulation, S-P-Y relationships have 

been constructed for use in planning and design applications of over-year water supply 

reservoirs, using standard operating policy. These relationships are useful in: (i) 

gaining an understanding of the variation of reservoir performance indicators namely, 

reliability, resilience, and vulnerability on the storage-yield plane; (ii) identifying the 

sensitive ranges of storage capacity of the over-year reservoirs, with regard to 
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perfonnance characteristics; and (iii) selecting between capacity expansion and 

demand management options, in case of deficit water supply systems. 

For highly over-year reservoirs, resilience and vulnerability do not seem to improve 

with increase in storage capacity, and hence, the decision regarding storage capacity 

depends primarily on reliability improvement. Approximate ranges of over-year 

storage capacity of water supply reservoirs, required to meet various target yields with 

a desirable range of reliability (0.95 to 0.99) are presented for a few selected cases of 

Cv and p1 of annual streamflows. For lower target yields, there is no significant 

improvement in resilience at low as well as high storage capacities, while a significant 

improvement is noted for the range in between. With increase in target yield, this 

transition range widens and moves towards higher storage capacities, eventually 

ending up in flat storage-resilience relationships for high target yields. In addition, 

appreciable reduction in vulnerability is noted in a certain range of storage capacity 

and this range widens and moves towards higher storage capacities with increase in 

target yield and/or Cv. This can be exploited in certain water supply systems, wherein 

the marginal value of either increase in resilience or decrease in vulnerability or both, 

is quite high. A S-P-Y database with a search facility has also been developed that 

~ould help in planning and design of reservoir capacity and in decisions regarding 

capacity expansion or implementation of demand management programs. 

Within-year Reservoirs 

For the Dharoi reservoir streamflows, the reservoir storage performance measures have 

been computed from the 41-year long historical flow sequence as well as the 41 00-year 

long synthetic flow sequences generated from the three stochastic streamflow models 
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considered (k-NN, HMBB and PMABB), for seven combinations of storage capacity 

(including the existing capacity) and ten combinations of yield (expressed in % of 

Mean Annual Flow). The results and investigation are presented only for the PMABB 

model, although the HMBB model yields competitive performance. 

The reservoir performance-yield relationships obtained are presented for the existing 

reservoir storage capacity of 732 Mm3 of Dharoi reservoir, using the historical flow 

sequence as well as the three long synthetic sequences generated from the three 

periodic stochastic models considered. The actual Jive storage capacity of the Dharoi 

reservoir (732 Mm3
) would yield a volume reliability of nearly 83% for 75% yield, 

while it would decrease to a value of 77.3% for 85% yield. If the same volume 

reliability of 83% is to maintained for an increased yield of 85%, than the storage 

capacity is to be increased to 1000 Mm3
, which will require a reservoir storage 

capacity expansion. 

The decrease in resilience with increase in yield is observed to be small. Likewise, the 

increase in the resilience with increase in the storage capacity (for the given yield), is 

also negligible, the reason being: the decrease in the number of events (decrease in the 

value of the numerator) is nearly proportional to the decrease in the number of failure 

periods (decrease in the value of the denominator). 

6.4 Optimal Hedging Rules for Water Supply Reservoirs 

A multi-objective optimization framework has been developed to evaluate optimal 

hedging rules. This employs NSGA-II, an efficient multi-objective genetic 

algorithm technique that can handle constrained formulations. The 
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evaluation of the non-dominant solutions on the trade-off surface between 

the conflicting objectives of minimization of vulnerability and minimization of 

shortage ratio helps us to compare the performance of the different hedging 

rules under water shortage conditions. 

A new hedging rule has been proposed in the present study which is more 

generic than the discrete hedging rule and the modified two-point hedging 

rule. From the results of the optimal hedging studies done using the Dharoi 

reservoir data, the proposed hedging rule is shown to produce efficient non­

dominant fronts containing well-distributed non-dominant solutions. The 

results are found to be consistent for moderate as well as highly critical water 

supply conditions. The compromising hedging policies obtained using the 

proposed rule is shown to yield a good number of trade-off solutions that 

exhibit good compromising performance with regard to the different reservoir 

storage performance indicators. 
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APPENDIX-1 

Information Regarding Source Files, Input Files and Output Files for Running the 
PMABB Model and Generating the Multi-season Synthetic Streamflow Replicates and 
Computing the Streamflow Statistics and the Water Use Statistics, given the 
observed/historical streamflow data measured at a site: 

The executables of the files have to be run in the following order: 

Step-1: First Synthetic replicates by Matched-block bootstrap have to be generated by 
executing the file "mabb.exe" (created from mabb.cpp). Results get stored in the file 
"synth.dat". 

Program File: MABB.CPP 
Executable File: MABB.exe 
Input Files: apple.dat, mabb.dat (for runs=l), mabb-par.dat, replno.dat 
Output Files: stat.det, synth.dat, check.out, matchbb.dat 

apple.dat: This file contains historical record of streamflows. The values are arranged such 
that each row has the appropriate number of multi-season flow records corresponding to one 
typical water year (12 records for monthly streamflows). 

mabb-par.dat: This file has five entries. 

Row 1 : It contains a value for the number of innovation series that have to be dispensed at 
the start of simulation. 

Row 2: It contains the value of burn-in period, in years. Size of each synthetic replicate 
(innovation) is equal to the sum of length of the historical record and burn-in period. 

Row 3: It contains the value of neighbourhood parameter "w", which is used for 
computing bandwidth (Bandwidth=2w+ 1) 

Row 4: It contains either 1 or 0 for the option "runs" 
Ifruns=1, the program would read block sizes from mabb.dat file 
If runs=O, the program would make user specify the block sizes 

Row 5: It contains replicate size, in years 

replno.dat: This file has two numbers. 

The first number denotes the number of synthetic replicates to be generated by the program. 

The second number denotes the number of lags to be considered for computation of 
correlation structure. The second number is not useful for synthetic sequence generation. It is 
useful at a later stage while computing statistics for replicates. 

mabb.dat: The number of within year blocks and the sizes of each of the blocks have to be 
entered in this file. 



For example, ifthere are 12 within-year blocks each of size 1 year, the following values have 
to be entered in the file. 

12 1 1 1 1 1 1 1 1 1 1 1 1 

If there are 5 within-year blocks of size 2, 4, 3, 1, 2 months, then, the entries will look like: 

524312 

stat.det: The output file shows the summary statistics (mean and standard deviation) 
computed for the synthetic streamflows computed for each period/season. This helps in 
making a quick check if the streamflow data generated are in order and the basic su:ounary 
statistics of the historical streamflows are statistically reproduced. 

synth.dat: Output file containing synthetic replicates obtained using the non-parametric 
technique Matched-block bootstrap. 

Output files that can be discarded: check.out, matchbb.dat 
check.out: is used for checking 
matchbb.dat: is useful in 

Step-2: Next, executable file created from "perturber.cpp" program "pertur-1.exe" has to be 
executed to perturb synthetic replicates that got stored in "synth.dat" file created in the 
previous step. The perturbed synthetic replicates are overwritten in the file "synth.dat". The 
current "synth.dat" file contains the required synthetic streamflow replicates. 

For example, consider that 500 synthetic replicates are generated. In such a case, the 
"synth.dat" file created will contain 501 sets. The first set is historical record (echo-printed 
for checking), with number of years written in front of it. The following 500 sets contain 
synthetic streamflow replicates, with the replicate number written in front of them. Note that 
the replicates are numbered as: 0, 1, 2, .. .488, 499. 

Program File: 
Executable File: 

Input Files: 

Output File: 

Perturber.cpp 
Perturber.exe 

apple.dat (contains historical data) 
synth.dat (contains synthetic replicates from MABB program) 
perturb.dat (contains user preference for pertubation) 

synth.dat (contains historical streamflows and synthetic streamflow 
replicates generated using PMABB). 

Perturb.dat: The file has four entries. 
Row 1: Lower limit of perturbation (1-8). For example, if 8 = 0.1 0, 1-8 = 0.90 
Row 2: Upper limit of perturbation (1+8). For example, if8 = 0.10, 1+8 = 1.10 
Row 3: Interval size (for Incrementing) 
Row 4: Number of intervals between lower and upper limits of perturbation. Example, if 

interval size is 0.01, the number of intervals between lower and upper limits is 
equal to (1.10-0.90)/0.01 = 20. 
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Step-3: 

The synthetic strearnflows generated in Step-2, need to be evaluated for the model 
performance in terms of: 
i) ability to reproduce the basic summary statistics (at multi-season and aggregated 

levels), marginal distributions (at multi-season and aggregated 
levels); 

ii) ability to preserve the dependence structure in respect of a number of serial 
correlations specified (multi-season and aggregated annual levels), state-dependent 
correlations (indicative of non-linear dependence); 

iii) ability to accurately predict the reservoir storage capacity corresponding to various 
demand levels (expressed as percent of mean annual flow); and 

iv) ability to accurately predict the critical and the mean drought (run) characteristics 
corresponding to various truncation levels (expressed as percent of mean annual 
flow). 

For evaluating the performance of the model, the following files from the PMABB (Main) 
folder are to be pasted to the STATISTICS folder (sub-folder): 

MABB.DAT; ii) PERTURB.DAT; iii) APPLE.DAT; iv) SYNTH.DAT 

The file RUN.DAT in the subfolder STATISTICS has to be modified by the user, 
corresponding to the flow data set to be modeled. 

Now, the program SEAS _PRO can be executed. 

Program File: SEAS_PRO.cpp 
Executable File: SEAS PRO.exe 

Input Files: apple.dat, mabb.dat, perturb.dat, REPLNO.dat, RUN.dat, SYNTH.dat 

Output File: ST ATE.gen, seascorr.his, seasmean.his, seasstd.his, seasskew.his, anncorr.his, 
cap.his, abovbwd.his, abovfwd.his, belobwd.his, belowfwd.his, event_ no.his, marl.his, 
mars.his, merl.his, mers.his, unitvol.dat, replcorr.dat, anncorr.dat, REPLDEV.dat, 
REPLMEAN.DAT, REPLSKEW.DAT, quantile.dat, EVENTdet.dat, MARLdet.dat, 
MASdet.dat, MERLdet.day, MERSdet.dat, check.det, histstat.det, capdetal.out, correl.out, 
filter.out, scfilter.out, summary.out, detail.out, qrtjunkl.out, qrtjunk2.out, statecor.out, 
STATEDET.out, abovbwd.qrt, abovfwd.qrt, belobwd.qrt, belofwd.qrt, cap.qrt, events.qrt, 
marl.qrt, mars.qrt, merl.qrt, mers.qrt, replcorr.qrt, repldev.qrt, replmean.qrt, replskew.qrt 

Summary of Useful Output Files: 
1. FILTER.out • Mean, standard deviation, skewness and serial correlat_ions (up to 7 

lags) - historical statistics, mean synthetic statistics are printed at 
periodic level 

• Mean, standard deviation, skewness and serial correlations (up to 7 
lags) - historical statistics, mean synthetic statistics are printed at 
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annual level 
• Reservoir storage capacity- for each demand level, historical value, 

mean synthetic value, standard deviation of synthetic value; R-Bias 
and R-RMSE of storage capacity 

• Drought Statistics (number of runs, maximum run length , average 
run length, maximum run sum, average run sum) for each truncation 
level - historical value, mean synthetic value, standard deviation of 
synthetic values, percent exceedance of historical value. 

2. SCFILTER.out • Lag-one state-dependent correlations (above and forward, above and 
backward, below and forward, and below and backward) periodic 
level - historical value, mean synthetic value, standard deviation of 
synthetic values 

3. Quantile Files • Mean synthetic flow statistics and quantiles (minimum, 5 percentile, 
25 percentile, median, 75 percentile, 95 percentile and maximum) of 
each of the statistics are printed in these files. 

These files are identified by the extension "qrt". 

• Mean - REPLMEAN.QRT, Standard deviation - REPLDEV.QRT, 
Skewness - REPLSKEW.QRT, Correlations -REPLMEAN.QRT, 
State dependent correlations- ABOVBWD.QRT, ABOVFWD.QRT, 
BELOBWD.QRT, BELOWFWD.QRT 

• Reservoir Storage - CAP.QRT 
• Drought Characteristics - EVENTS.QRT, MARL.QRT, MARS.QRT, 

MERL.QRT, MERS.QRT 

~ 
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COMPUTATION OF STATISTICS 

The listing of the various input files required to run and the various output files that 
will be generated from the different source programs that are used to compute a variety 
of streamflow statistics, including the validation (water-use) statistics (reservoir storage 
capacity and critical and mean drought characteristics) for the historical as well as the 
synthetic streamflows is given below. 

Estimation of Summary Statistics: 

STAT.CPP 

COMPUTATION OF SUMMARY STATISTICS AND SERIAL CORRELATIONS OF 
MULTI-SEASON (PERIODIC) FLOWS 

INPUT FILES: SYNTH.DAT, MABB.DAT, PERTURB.DAT 
OUTPUT FILES: FILTER.OUT (APPENDED), SUMMARY.OUT, 
CORREL.OUT(NOT USEFUL), SEASMEAN.HIS, SEASSTDV.HIS, 
SEASSKEW.HIS, SEASCORR.HIS, REPLCORR.DAT, REPLNO.DAT 

Estimation of Ouantiles of Summary Statistics: 

QUARTDAT.CPP 

PREPARATION OF DATA FILES FOR ESTIMATION OF QUANTILES OF SUMMARY 
STATISTICS 
INPUT FILE : SUMMARY. OUT (OUTPUT OF STA T.CPP) 
OUTPUT FILES: REPLMEAN.DAT, REPLDEV.DAT, REPLSKEW.DAT 

MEANQRT.CPP 

COMPUTATION OF QUANTILE VALUES FOR MEAN FLOW OF PERIODIC DATA 
INPUT FILES : REPLMEAN.DAT, REPLNO.DAT, SIZE.DAT 
OUTPUT FILE: REPLMEAN.QRT (APPENDED) 

SDDEVQRT.CPP 

COMPUTATION OF QUANTILE VALUES OF STANDARD DEVIATION OF 
PERIODIC FLOWS 
INPUT FILES : REPLDEV.DAT, REPLNO.DAT, SIZE.DAT 
OUTPUT FILE: REPLDEV.QRT (APPENDED) 

SKEWQRT.CPP 

COMPUTATION OF QUANTILE VALVES FOR SKEWNESS OF PERIODIC FLOWS 
INPUT FILES : REPLSK.EW.DAT, REPLNO.DAT, SIZE.DAT 
OUTPUT FILE: REPLSK.EW.QRT (APPENDED) 



ANNCHECK.CPP 

COMPUTATION OF SUMMARY STATISTICS OF ANNUAL FLOWS FROM PERIODIC 
FLOWS 

INPUT FILES : SYNTH.DAT, SIZE.DAT, REPLNO.DAT, UNITVOL.DAT 
OUTPUT FILES : CORREL.OUT, ANNCORR.HIS, ANNCORR.DAT; 
SEASMEAN.HIS, SEASSKEW.HIS, SEASCORR.HIS, SEASSTDV.HIS; 
REPLMEAN.DAT, REPLDEV.DAT, REPLSKEW.DAT, FILTER.OUT 

Quantile Estimation for Correlation Structure: 

CORRQRT.CPP 

COMPUTATION OF QUANTILE VALUES FOR CORRELATIONS OF PERIODIC 
DATA 
INPUT FILES: REPLCORR.DAT, SIZE.DAT, REPLNO.DAT, ANNCORR.DAT 
OUTPUT FILE: REPLCORR.QRT (APPENDED) 

Computation of State-dependent Correlations: 

Pre-processing of Replicates: 

STATECOR.CPP 

PROGRAM FOR COMPUTATION OF STATE-DEPENDENT 
CORRELATIONS 
INPUT FILES: SYNTH.DAT, REPLNO.DAT 
OUTPUT FILES: STATE.GEN, STATEDET.OUT 

Grouping the data into various class intervals: 

STATCOR2.CPP 

PROGRAM FOR COMPUTATION OF STATE-DEPENDENT 
CORRELATIONS 
INPUT FILES : SIZE.DAT, REPLNO.DAT, SYNTH.DAT, STATE.GEN 
OUTPUT FILES : STATECOR.OUT, SCFILTER.OUT, 

ABOVFWD.QRT, BELOFWD.QRT, ABOVBWD.QRT, 
BELOBWD.QRT, 
ABOVFWD.HIS, BELOFWD.HIS, ABOVBWD.HIS, 
BELOBWD.HIS 

Computation of Cross-correlations: 

Processor {or the Periodic Cross-correlations: 
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CROSSPRO.CPP 

Computation of Cross-correlations 

CROSSCOR.CPP 

PROGRAM FOR THE COMPUTATION OF CROSS CORRELATIONS OF 
PERIODIC STREAMFLOWS 
INPUT FILE : SYNTH.DAT 
OUTPUT FILE : CROSS.GEN 
SUBSEQUENT FILES REQUIRED : CROSPLUS.CPP, CROSSQRT.CPP 

CROSPLUS.CPP 

PROGRAM FOR THE COMPUTATION OF CROSS CORRELATIONS 
MAIN JOB : FURTHER PROCESSING OF THE OUTPUT FROM 
CROSSCOR.CPP 
INPUT FILES : CROSS.GEN (Replicate-wise cross-corr. details), 

REPLNO.DAT 
OUTPUT FILES : 

Main Output Files: 
CROSSCOR.OUT (Preservation ofHist. values) 
CROSCORR.QNT (Quantiles for box-plot) 

Intermediate Files: 
CRSJUNKI.QNT (Mean Values ofvarious cross-correlations) 
CRSJUNK2.QNT (Quantiles of various cross-correlations) 

CROSSCOR.HIS (Hist. values of Month-to-year cross-corr.) 

Additional File for Post-Processing: 
CROSSQRT.DAT (Data file for computing Month-to-Year 
cross-corrs.) 

Computation of QuantiZes of Cross-correlations: 

CROSSQRT.CPP 

COMPUTATION OF QUANTILE VALUES FOR CROSS CORRELATIONS 
OF MULTI-SEASON (PERIODIC) DATA 
INPUT FILES: CROSSQRT.DAT, REPLNO.DAT, SIZE.DAT 
OUTPUT FILE: CROSSCOR.QRT (APPENDED) 

TOYUPMA.CPP 

PROGRAM FOR SEPERATION OF MONTH-TO-MONTH CROSS-CORRELATION 
QUANTILES BETWEEN MONTHLY FLOWS IN SUCCESSIVE YEARS 
INPUT FILES: REPLCORR.QRT, TOYUPMA.DAT 



I , 

I . 

OUTPUT FILES: TOYUPMA.GEN, TOYUPMA.QRT 

Prediction of Reservoir Storage Capacity: 

SEQPEAK.CPP 

SEQUENT PEAK ALGORITHM FOR DETERMINATION OF NON-F AlLURE 
CAP A CITY FOR PERIODIC FLOWS 
INPUT FILES : SYNTH.DAT, REPLNO.DAT, SIZE.DAT 
OUTPUT FILES: CHECK.DET, QUANTILE.DAT, CAPDETAL.OUT (APPENDED) 

Quantile Estimation for Reservoir Storage Capacity: 

CAPQRT.CPP 

COMPUTATION OF QUANTILE VALUES FOR STORAGE CAPACITY OF PERIODIC 
DATA 
INPUT FILES: QUANTILE.DAT, SIZE.DAT, REPLNO.DAT 
OUTPUT FILE: CAP.QRT (APPENDED) 

Annual and Multi-season Drought Analysis 

NEWRUN.CPP 

PROGRAM FOR ANALYSIS OF ANNUAL & PERIODIC DROUGHT (RUN) 
CHARACTERISTICS 

INPUT FILES: RUN.DAT, SIZE.DAT, APPLE.DAT, SYNTH.DA T (REPLICA.DA T) 

OUTPUT FILES: FILTER.OUT, EVENTS.QRT, MARL.QRT, MERL.QRT, MARS.QRT, 
MERS.QRT, QRTJUNKl.DAT, QRTJUNK2.DA T, HISTSTAT.DET, DETAIL. OUT, 
MARLDET.DAT, MERLDET.DAT, MARSDET.DAT, MERSDET.DAT, 
EVENTDET.DAT, EVENT_ NO.HIS, MARL. HIS, MERL.HIS, MARS.HIS, MERS.HIS 

NOTE : NP=l DENOTES ANNUAL DROUGHT ANALYSIS 
SYNTH.DAT IS THE DATA FILE FOR SINGLE-SITE MODELING 

NP=12 INDICATES PERIODIC DROUGHT ANALYSIS 
REPLICA.DAT IS THE DATA FILE FOR MULTI-SITE MODELING 

-, 
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APPENDIX -2.. 
I R . 0 Table: Typical Simulation Output from Water Supply eservo1r 

year month Initial storage Inflow Demand Evaportation 

I I 731.99 24.17 54.69 0 

I 2 701.47 194.79 36.46 0 

I 3 731.99 3629 36.46 0 

I 4 731.82 204.52 34.64 0 

I 5 731.99 31.64 56.52 0 

1 6 707.12 9.65 55.54 0 

I 7 661.23 4.64 55.54- 0 

I 8 610.33 3.34 55.54 0 

I 9 558.13 1.81 55.54 0 

1 10 504.40 0.58 55.54 0 

1 11 449.44 0.29 55.54 0 

I 12 394.18 0.22 55.54 0 

2 I 338.86 35.93 54.69 0 

2 2 320.09 11.25 36.46 0 

2 3 294.88 28.01 36.46 0 

2 4 286.43 24.46 34.64 0 

2 5 276.25 9.00 56.52 0 

2 6 228.74 2.32 55.54 0 

2 7 175.52 0.36 55.54 0 

2 8 120.34 0.00 55.54 0 

2 9 64.79 0.00 55.54 0 

2 10 9.25 0.00 55.54 0 

2 11 0.00 0.00 55.54 0 

2 12 0.00 0.00 55.54 0 

3 I 0.00 7.48 54.69 0 

3 2 0.00 445.33 36.46 0 

3 3 408.86 72.36 36.46 0 

3 4 444.76 121.27 34.64 0 

3 5 531.40 27.29 56.52 0 

3 6 502.17 9.43 55.54 0 

3 7 456.06 6.46 55.54 0 

3 8 406.98 5.66 55.54 0 

3 9 357.10 4.50 55.54 0 

3 10 306.06 3.41 55.54 0 

3 II 253.92 2.47 55.54 0 

3 12 200.85 2.18 55.54 0 

Break 

15 I 0.00 1.74 54.69 0 

15 2 0.00 58.93 36.46 0 

15 3 22.47 66.04 36.46 0 

15 4 52.05 19.89 34.64 0 

IS 5 37.30 5.01 56.52 0 

15 6 0.00 0 .65 55.54 0 

15 7 0.00 0.36 55.54 0 

15 8 0.00 0.36 55.54 0 

15 9 0.00 0.29 55.54 0 

15 10 0.00 0.22 55.54 0 

15 11 0.00 0.15 55.54 0 

15 12 0.00 0.44 55.54 0 

16 1 0.00 0.29 54.69 0 

16 2 0.00 383.20 36.46 0 

16 3 346.74 155.39 36.46 0 

16 4 465.66 1197.72 34.64 0 

16 5 731.99 12 1.42 56.52 0 

16 6 731.99 35.i3 55.54 0 

16 7 7 11.57 IS.36 55.54 0 

perat1on 
max_def_ 

Release Final Storage deficit month 

54.69 701.47 0.00 0.00 

36.46 731.99 0.00 0.00 

36.46 731.82 0.00 0.00 

34.64 731.99 0.00 0.00 

56.52 707.12 0.00 0.00 

55.54 661.23 0.00 0.00 

55.54 610.33 0.00 0.00 

55.54 558.13 0.00 0.00 

55.54 504.40 0.00 0.00 

55.54 449.44 0 .00 0.00 

55.54 394.18 0.00 0.00 

55.54 338.86 0.00 0.00 

54.69 320.09 0 .00 0.00 

36.46 294.88 0.00 0.00 

36.46 286.43 0.00 0.00 

34.64 276.25 0.00 0.00 

56.52 228.74 0.00 0.00 

55.54 175.52 0.00 0.00 

55.54 120.34 0.00 0.00 

55.54 64.79 0.00 0.00 

55.54 9.25 0.00 0.00 

9.25 0.00 46.29 46.29 

0.00 0.00 55.54 55.54 

0.00 0.00 55.54 55.54 

7.48 0.00 47.22 4722 

36.46 408.86 0.00 0.00 

36.46 444.76 0.00 0.00 

34.64 531.40 0.00 0.00 

56.52 502.17 0.00 0 .00 

55.54 456.06 0.00 0.00 

55.54 406.98 0.00 0.00 

55.54 357.10 0.00 0.00 

55.54 306.06 0.00 0.00 

55.54 253.92 0.00 46.29 

55.54 200.85 0.00 55.54 

55.54 147.48 0 .00 55.54 

1.74 0.00 52.95 53.60 

36.46 22.47 0.00 13.16 

36.46 52.05 0.00 0.00 

34.64 37.30 0.00 0.00 

42.31 0.00 14.21 24.55 

0.65 0.00 54.89 54.89 

0.36 0.00 55.18 55.54 

0.36 0.00 55.18 55.54 

0.29 0.00 55.25 55.54 

0.22 0.00 55.33 55.54 

0.15 0.00 55.40 55.54 

0.44 0.00 55.11 55.54 

0.29 0.00 54.40 54.40 

36.46 346.74 0.00 13.16 

36.46 465.66 0.00 0 .00 

34.64 731.99 0.00 0 .00 

56.52 731.99 0.00 24.55 

55.54 7! 1.57 0.00 54.89 

55.54 674.39 0.00 55.54 

max_deficit_s max_deficit_le Release for 
urn event SUJILdeficit No events deficit no ngth Condition CheckSum Limits Demand D+K Check 

0.00 0.00 I 0.00 0 2 756.16 0 54.69 786.68 54.69 

0.00 0.00 I 0.00 0 3 896.26 0 36.46 768.45 36.46 

0.00 0.00 I 0.00 0 2 768.28 0 36.46 768.45 36.46 • 
0.00 0.00 I 0.00 0 3 936.34 0 34.64 766.63 34.64 

0.00 0.00 I 0.00 0 2 763.63 0 56.52 788.51 56.52 

0.00 0.00 1 0.00 0 2 716.77 0 55.54 787.53 55.54 

0.00 0.00 I 0.00 0 2 665.87 0 55.54 787.53 55.54 

0.00 0.00 I 0.00 0 2 613.67 0 55.54 787.53 55.54 

0.00 0.00 1 0.00 0 2 559.94 0 55.54 787.53 55.54 

0.00 0.00 I 0.00 0 2 504.98 0 55.54 787.53 55.54 

0.00 0.00 I 0.00 0 2 449.73 0 .)5.54 1()"'9 '"" • -'·-..J ' JJ.;)'+ 

0.00 0.00 ! 0.00 0 2 394.40 0 55.54 787.53 
- 55.~ 

0.00 0.00 1 0.00 0 2 374.78 0 54.69 786.68 54.69 

0.00 0.00 I 0.00 0 2 331.34 0 36.46 768.45 36.46 

0.00 0.00 1 0.00 0 2 "-?2.89 0 36.46 768.45 36.46 - --
0.00 0.00 1 0.00 0 2 310.89 0 34.64 766.63 34.64 

0.00 0.00 1 0.00 0 2 285.25 0 56.52 788.51 56.52 

0.00 0.00 1 0.00 0 2 231.06 0 55.54 787.53 55.54 

0.00 0.00 1 0.00 0 2 175.88 0 55.54 787.53 55.54 

0.00 0.00 I 0.00 0 2 120.34 0 55.54 787.53 55.54 

0.00 0.00 1 0.00 0 2 64.79 0 55.54 787.53 55.54 

46.29 46.29 2 1.00 1 1 9.25 0 55.54 787.53 9.25 

lt1.84 101.84 2 2.00 2 1 0.00 0 55.54 787.53 0.00 

157.38 157.38 2 3.00 3 I 0.00 0 55.54 787.53 0.00 

204.60 204.60 2 4.00 4 1 7.48 0 54.69 786.68 7.48 

204.60 204.60 2 0.00 4 2 445.33 0 36.46 768.45 36.46 

204.60 204.60 2 0.00 4 2 481.22 0 36.46 768.45 36.46 

204.60 204.60 2 0.00 4 2 566.04 0 34.64 766.63 34.64 

204.60 204.60 2 0 .00 4 2 558.69 0 56.52 788.51 56.52 

204.60 204.60 2 0.00 4 2 511.61 0 55.54 787.53 55.54 

204.60 204.60 2 0.00 4 2 462.52 0 55.54 787.53 55.54 

204.60 204.60 2 0.00 4 2 412.64 0 55.54 787.53 55.54 

204.60 204.60 2 0.00 4 2 361.60 0 55.54 787.53 55.54 

204.60 204.60 2 0.00 4 2 309.47 0 55.54 787.53 55.54 

204.60 204.60 2 0.00 4 2 256.39 0 55.54 787.53 55.54 -
204.60 204.60 2 0.00 4 2 203.03 0 55.54 787.53 55.54 

417.46 1461.68 6 31.00 9 I 1.74 0 54.69 786.68 1.74 

417.46 1461.68 6 0.00 9 2 58.93 0 36.46 768.45 36.46 

417.46 1461.68 6 0.00 9 2 88.51 0 36.46 768.45 36.46 

417.46 1461.68 6 0.00 9 2 71.94 0 34.64 766.63 34.64 

417.46 1475.89 7 32.00 9 1 42.31 0 56.52 788.51 42.31 

417.46 1530.78 7 33.00 9 I 0.65 0 55.54 787.53 0.65 -417.46 1585.96 7 34.00 9 1 0.36 0 55.54 787.53 0.36 

417.46 1641.14 7 35.00 9 1 0.36 0 55.54 787.53 0.36 

417.46 1696.39 7 36.00 9 I 0.29 0 55.54 787.53 0.29 

417.46 1751.71 7 37.00 9 1 0.22 0 55.54 787.53 0.22 

417.46 1807.11 7 38.00 9 1 0.15 0 55.54 787.53 O.i5 

417.46 1862.22 7 39.00 9 1 0.44 0 55.54 787.53 0.44 

454.94 1916.62 7 40.00 9 1 0.29 0 54.69 786.68 0.29 

454.94 1916.62 7 0.00 9 2 383.20 0 36.46 768.45 36.46 

454.94 1916.62 7 0.00 9 2 502.13 0 36.46 768.45 36.46 

454.94 1916.62 7 O.OQ 9 3 1663.39 0 34.64 766.63 34.64 

454.94 1916.62 7 0.00 9 3 853.41 0 56.52 788.51 56.52 

454.94 1916.62 7 0.00 9 2 767.12 0 55.54 787.53 55.54 

454.94 1916.62 7 0.00 9 2 729.94 0 55.54 787.53 55.54 
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year month Initial storage 

16 8 

16 9 

16 10 

16 ll 

16 12 

17 1 

17 2 

17 3 

17 4 

Break 

40 1 

40 2 

40 3 

40 4 

40 5 

40 6 

40 7 

40 8 

40 9 

40 10 

40 II 

40 12 

41 l 

41 2 

41 3 

41 4 

41 5 

41 6 

41 7 

41 8 

41 9 

41 10 

41 11 

41 12 

Max Deficit length of sequence = 

Max. Deficit Sum of Sequence 

Numba of Failure periods = 

674.39 

63228 

584.06 

531.71 

477.62 

422.59 

373.70 

486.17 

589.20 

456.77 

545.85 

553.14 

657.56 

643.97 

606.25 

55325 

498.72 

46626 

425.45 

384.93 

340.78 

292.50 

249.13 

471.55 

731.99 

731.99 

731.99 

699.16 

652.62 

602.96 

552.93 

498.98 

44424 

Inflow 

13.43 

7.33 

3.19 

1.45 

0.51 

5.81 

148.93 

139.49 

15.89 

143.77 

44.34 

14029 

21.05 

18.80 

2.54 

1.02 

23.08 

14.73 

15.02 

11.39 

7.26 

11.32 

258.88 

398.37 

504.84 

13325 

22.72 

9.00 

5.88 

5.52 

1.60 

0.80 

1.23 

-

Demand 

55.54 

55.54 

55.54 

55.54 

55.54 

54.69 

36.46 -

36.46 

34.64 

54.69 

36.46 

36.46 

34.64 

56.52 

55.54 

55.54 

55.54 

55.54 

55.54 

55.54 

55.54 

54.69 

36.46 

36.46 

34.64 

56.52 

55.54 

55.54 

55.54 

55.54 

55.54 

55.54 

55.54 

9 

454.94 

75 

Numba of Events 13 

Mean Event Deficit Length for the Sequence(Sum_deflen!No_EVNTS) 

Mean Event Deficit Sum for the Sequeoce(Sum_defsurn!No_EVNTS) 

Volume Based Reliability (=1-Sum_defswni(Annual_demand*NY)) 

Occurrence Based Reliability (=1-Sum_deflen/(NY*NP)) 

Resilience (No. of Events/Number offailure periods) = 

Vulnerability = 55.54 Occur in Year 2 

Total Deficit = 
Total Demand = 
Shortage Ratio = 

3452.81 

24910.28 

0.14 

Evaportation 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

and Month 

Release 

55.54 

55.54 

55.54 

55.54 

55.54 

54.69 

36.46 

36.46 

34.64 

54.69 

36.46 

36.46 

34.64 

56.52 

55.54 

55.54 

55.54 

55.54 

55.54 

55.54 

55.54 

54.69 

36.46 

36.46 

34.64 

56.52 

55.54 

55.54 

55.54 

55.54 

55.54 

55.54 

55.54 

6.25 

287.73 

0.86 

0.85 

0.16 

Jl 

max_def_ max_deficit_s max_deficit_le Release for • Fmal Storage deficit month UJILeVent sum_ deficit No_events deficit_no ngth Condition CheckSum Limits Demand D+K Check 

632.28 0.00 55.54 454.94 1916.62 7 0.00 9 2 687.82 0 55.54 787.53 55.54 

584.06 0.00 55.54 454.94 1916.62 7 0.00 9 2 639.61 0 55.54 787.53 55.54 

531.71 0.00 55.54 454.94 1916.62 7 0.00 9 2 58"-26 0 55.54 787.53 55.54 

477.62 0.00 55.54 454.94 1916.62 7 0.00 9 2 533.17 0 55.54 787.53 55.54 

422.59 0.00 55.54 454.94 1916.62 7 0.00 9 2 478.13 0 55.54 787.53 55.54 

373.70 0.00 54.40 454.94 1916.62 7 0.00 9 2 428.39 0 54.69 786.68 54.69 

486.17 0.00 13.16 454.94 1916.62 7 0.00 9 2 522.63 0 36.46 768.45 36.46 

589.20 0.00 0.00 454.94 1916.62 7 0.00 9 2 62$.66 0 36.46 768.45 36.46 

570.45 0.00 0.00 454.94 1916.62 7 0.00 9 2 60.3.09 0 34.64 766.63 34.64 

545.85 0.00 54.40 454.94 3452.81 13 0.00 9.00 2 600.54 0 54.69 786.68 54.69 

553.74 0.00 22.96 454.94 3452.81 13 0.00 9.00 2 590.20 0 36.46 768.45 36.46 

657.56 0.00 26.81 -154.94 3452.81 13 0.00 9.00 2 694.02 0 36.46 768.45 36.46 -643.97 0.00 0.00 454.94 3452.81 13 0.00 9.00 2 678.61 0 34.64 766.63 34.64 

606.25 0.00 24.55 454.94 3452.81 13 0.00 9.00 2 662.17 0 56.52 788.51 56.52 

553.25 0.00 54.89 454.94 3452.81 13 0.00 9.00 2 608.79 0 55.54 787.53 55.54 

498.72 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 554.27 0 55.54 787.53 55.54 

466.26 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 521.80 0 55.54 787.53 55.54 

425.45 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 480.99 0 55.54 787.53 55.54 

384.93 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 440.47 0 55.54 787.53 55.54 

340.78 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 396.33 0 55.54 787.53 55.54 

292.50 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 348.04 0 55.54 787.53 55.54 

249.13 0.00 54.40 454.94 3452.81 13 0.00 9.00 2 303.82 0 54.69 786.68 54.69 

471.55 0.00 22.96 454.94 3452.81 13 0.00 9.00 2 508.01 0 36.46 768.45 36.46 

731.99 0.00 26.81 454.94 3452.81 13 0.00 9.00 3 869.92 0 36.46 768.45 36.46 

731.99 0.00 0.00 454.94 3452.81 13 0.00 9.00 3 12"36.83 0 34.64 766.63 34.64 

731.99 0.00 24.55 4:54.94 3452.81 13 0.00 9.00 3 865.24 0 56.52 788.51 56.52 

699.16 0.00 54.89 454.94 3452.81 13 0.00 9.00 2 7~4.71 0 55.54 787.53 55.54 

652.62 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 708.16 0 55.54 787.53 55.54 

602.96 0.00 55.54 4:54.94 3452.81 13 0.00 9.00 2 658.50 0 55.54 787.53 55.54 

552.93 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 608.47 0 55.54 787.53 55.54 

498.98 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 5.54.53 0 55.54 787.53 55.54 

444.24 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 499.78 0 55.54 787.53 55.54 

389.93 0.00 55.54 454.94 3452.81 13 0.00 9.00 2 445.47 0 55.54 787.53 55.54 

-
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